Skip to main content

Advertisement

Log in

Activation of Villous Trophoblastic p38 and ERK1/2 Signaling Pathways in Preterm Preeclampsia and HELLP Syndrome

  • Research
  • Published:
Pathology & Oncology Research

Abstract

Preterm preeclampsia is associated with the failure of trophoblast invasion, placental hypoxic/ischemic injury and the release of toxic substances, which promote the terminal pathway of preeclampsia. In term preeclampsia, factors yet unknown trigger the placenta to induce the terminal pathway. The contribution of the villous trophoblast to these pathologic events has not been fully elucidated. Here we aimed to study how stress and signaling pathways influence trophoblastic functions in various subforms of preeclampsia. Tissue microarrays (TMAs) were constructed from placentas obtained from pregnant women in the following groups: 1–2) preterm preeclampsia with (n = 8) or without (n = 7) HELLP syndrome; 3) late-onset preeclampsia (n = 8); 4–5) preterm (n = 5) and term (n = 9) controls. TMA slides were stained for phosphorylated Akt-1, ERK1/2, JNK, and p38 kinases, and trophoblastic immunostainings were semi-quantitatively evaluated. BeWo cells were kept in various stress conditions, and the expression of FLT1, GCM1, LEP, and PGF was profiled by qRT-PCR, while Akt-1, ERK1/2, JNK, and p38 kinase activities were measured with phospho-kinase immunoassays. We found that: 1) Placental LEP and FLT1 expression was up-regulated in preterm preeclampsia with or without HELLP syndrome compared to controls; 2) Mean pp38 immunoscore was higher in preterm preeclampsia, especially in cases with HELLP syndrome, than in controls. 3) Mean pERK1/2 immunoscore was higher in preterm preeclampsia with HELLP syndrome than in controls. 4) In BeWo cells, ischemia up-regulated LEP expression, and it increased JNK and decreased ERK1/2 activity. 5) Hypoxia up-regulated FLT1 and down-regulated PGF expression, and it increased ERK1/2, JNK and p38 activity. 6) IL-1β treatment down-regulated PGF expression, and it increased JNK and p38 activity. 7) The p38 signaling pathway had the most impact on LEP, FLT1 and PGF expression. In conclusion, hypoxic and ischemic stress, along with unknown factors, activates trophoblastic p38 signaling, which has a key role in villous trophoblastic functional changes in preterm preeclampsia. The activation of ERK1/2 signaling may induce additional trophoblastic functional changes in HELLP syndrome, while distinct mechanisms may promote late-onset preeclampsia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sibai B, Dekker G, Kupferminc M (2005) Pre-eclampsia. Lancet 365(9461):785–799

    Article  PubMed  Google Scholar 

  2. von Dadelszen P, Magee LA, Roberts JM (2003) Subclassification of preeclampsia. Hypertens Pregnancy 22(2):143–148

    Article  Google Scholar 

  3. Weinstein L (1982) Syndrome of hemolysis, elevated liver enzymes, and low platelet count: a severe consequence of hypertension in pregnancy. Am J Obstet Gynecol 142(2):159–167

    CAS  PubMed  Google Scholar 

  4. Than NG, Vaisbuch E, Kim CJ, Mazaki-Tovi S, Erez O, Yeo L, Mittal P, Hupuczi P, Varkonyi T, Hassan SS, Papp Z, Romero R (2012) Early-Onset Preeclampsia and HELLP Syndrome: An Overview. Handbook of growth and growth monitoring in health and disease.: Springer, New York 1867–1891

  5. Moldenhauer JS, Stanek J, Warshak C, Khoury J, Sibai B (2003) The frequency and severity of placental findings in women with preeclampsia are gestational age dependent. Am J Obstet Gynecol 189(4):1173–1177

    Article  PubMed  Google Scholar 

  6. Ogge G, Chaiworapongsa T, Romero R, Hussein Y, Kusanovic JP, Yeo L, Kim CJ, Hassan SS (2011) Placental lesions associated with maternal underperfusion are more frequent in early-onset than in late-onset preeclampsia. J Perinat Med 39(6):641–652

    Article  PubMed Central  PubMed  Google Scholar 

  7. Varkonyi T, Nagy B, Fule T, Tarca AL, Karaszi K, Schonleber J, Hupuczi P, Mihalik N, Kovalszky I, Rigo J Jr, Meiri H, Papp Z, Romero R, Than NG (2011) Microarray profiling reveals that placental transcriptomes of early-onset HELLP syndrome and preeclampsia are similar. Placenta 32(Suppl):S21–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Kleinrouweler CE, van Uitert M, Moerland PD, Ris-Stalpers C, van der Post JA, Afink GB (2013) Differentially expressed genes in the pre-eclamptic placenta: a systematic review and meta-analysis. PLoS ONE 8(7):e68991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Brosens IA (1977) Morphological changes in the utero-placental bed in pregnancy hypertension. Clin Obstet Gynaecol 4(3):573–593

    CAS  PubMed  Google Scholar 

  10. Brosens I, Pijnenborg R, Vercruysse L, Romero R (2011) The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am J Obstet Gynecol 204(3):193–201

    Article  PubMed Central  PubMed  Google Scholar 

  11. Genbacev O, Joslin R, Damsky CH, Polliotti BM, Fisher SJ (1996) Hypoxia alters early gestation human cytotrophoblast differentiation/invasion in vitro and models the placental defects that occur in preeclampsia. J Clin Invest 97(2):540–550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Redman CW, Sargent IL (2000) Placental debris, oxidative stress and pre-eclampsia. Placenta 21(7):597–602

    Article  CAS  PubMed  Google Scholar 

  13. Soleymanlou N, Jurisica I, Nevo O, Ietta F, Zhang X, Zamudio S, Post M, Caniggia I (2005) Molecular evidence of placental hypoxia in preeclampsia. J Clin Endocrinol Metab 90(7):4299–4308

    Article  CAS  PubMed  Google Scholar 

  14. Nevo O, Soleymanlou N, Wu Y, Xu J, Kingdom J, Many A, Zamudio S, Caniggia I (2006) Increased expression of sFlt-1 in in vivo and in vitro models of human placental hypoxia is mediated by HIF-1. Am J Physiol Regul Integr Comp Physiol 291(4):R1085–1093

    Article  CAS  PubMed  Google Scholar 

  15. Cindrova-Davies T (2009) Gabor Than Award Lecture 2008: pre-eclampsia - from placental oxidative stress to maternal endothelial dysfunction. Placenta 30(Suppl A):S55–65

  16. Burton GJ, Woods AW, Jauniaux E, Kingdom JC (2009) Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 30(6):473–482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Burton GJ, Yung HW, Cindrova-Davies T, Charnock-Jones DS (2009) Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta 30(Suppl A):S43–48

    Article  PubMed  Google Scholar 

  18. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, Libermann TA, Morgan JP, Sellke FW, Stillman IE, Epstein FH, Sukhatme VP, Karumanchi SA (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 111(5):649–658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Chaiworapongsa T, Romero R, Kim YM, Kim GJ, Kim MR, Espinoza J, Bujold E, Goncalves L, Gomez R, Edwin S, Mazor M (2005) Plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated prior to the clinical diagnosis of pre-eclampsia. J Matern Fetal Neonatal Med 17(1):3–18

    Article  CAS  PubMed  Google Scholar 

  20. Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, Bdolah Y, Lim KH, Yuan HT, Libermann TA, Stillman IE, Roberts D, D’Amore PA, Epstein FH, Sellke FW, Romero R, Sukhatme VP, Letarte M, Karumanchi SA (2006) Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 12(6):642–649

    Article  CAS  PubMed  Google Scholar 

  21. Ng EK, Leung TN, Tsui NB, Lau TK, Panesar NS, Chiu RW, Lo YM (2003) The concentration of circulating corticotropin-releasing hormone mRNA in maternal plasma is increased in preeclampsia. Clin Chem 49(5):727–731

    Article  CAS  PubMed  Google Scholar 

  22. Cindrova-Davies T, Spasic-Boskovic O, Jauniaux E, Charnock-Jones DS, Burton GJ (2007) Nuclear factor-kappa B, p38, and stress-activated protein kinase mitogen-activated protein kinase signaling pathways regulate proinflammatory cytokines and apoptosis in human placental explants in response to oxidative stress: effects of antioxidant vitamins. Am J Pathol 170(5):1511–1520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Crocker I (2007) Gabor Than Award Lecture 2006: pre-eclampsia and villous trophoblast turnover: perspectives and possibilities. Placenta 28(Suppl A):S4–13

  24. Sacks GP, Studena K, Sargent K, Redman CW (1998) Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am J Obstet Gynecol 179(1):80–86

    Article  CAS  PubMed  Google Scholar 

  25. Gervasi MT, Chaiworapongsa T, Pacora P, Naccasha N, Yoon BH, Maymon E, Romero R (2001) Phenotypic and metabolic characteristics of monocytes and granulocytes in preeclampsia. Am J Obstet Gynecol 185(4):792–797

    Article  CAS  PubMed  Google Scholar 

  26. Redman CW, Sargent IL (2005) Latest advances in understanding preeclampsia. Science 308(5728):1592–1594

    Article  CAS  PubMed  Google Scholar 

  27. Than NG, Abdul Rahman O, Magenheim R, Nagy B, Fule T, Hargitai B, Sammar M, Hupuczi P, Tarca AL, Szabo G, Kovalszky I, Meiri H, Sziller I, Rigo J Jr, Romero R, Papp Z (2008) Placental protein 13 (galectin-13) has decreased placental expression but increased shedding and maternal serum concentrations in patients presenting with preterm pre-eclampsia and HELLP syndrome. Virchows Arch 453(4):387–400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Szalai G, Xu Y, Romero R, Chaiworapongsa T, Xu Z, Chiang PJ, Ahn H, Sundell B, Plazyo O, Jiang Y, Olive M, Jacques SM, Qureshi F, Tarca AL, Erez O, Dong Z, Papp Z, Hassan SS, Hernandez-Andrade E, Than NG (2014) In vivo experiments reveal the good, the bad and the ugly faces of sFlt-1 in pregnancy. PLoS ONE 9(11):e110867

    Article  PubMed Central  PubMed  Google Scholar 

  29. Redman CW, Sargent IL, Staff AC (2014) IFPA Senior Award Lecture: making sense of pre-eclampsia- two placental causes of preeclampsia? Placenta 35:S20–S25

  30. Yung HW, Atkinson D, Campion-Smith T, Olovsson M, Charnock-Jones DS, Burton GJ (2014) Differential activation of placental unfolded protein response pathways implies heterogeneity in causation of early- and late-onset pre-eclampsia. J Pathol 234(2):262–276

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Aronow BJ, Richardson BD, Handwerger S (2001) Microarray analysis of trophoblast differentiation: gene expression reprogramming in key gene function categories. Physiol Genomics 6(2):105–116

    CAS  PubMed  Google Scholar 

  32. Ge YC, Li JN, Ni XT, Guo CM, Wang WS, Duan T, Sun K (2011) Cross talk between cAMP and p38 MAPK pathways in the induction of leptin by hCG in human placental syncytiotrophoblasts. Reproduction 142(2):369–375

    Article  CAS  PubMed  Google Scholar 

  33. Kudo Y, Boyd CA, Sargent IL, Redman CW, Lee JM, Freeman TC (2004) An analysis using DNA microarray of the time course of gene expression during syncytialization of a human placental cell line (BeWo). Placenta 25(6):479–488

    Article  CAS  PubMed  Google Scholar 

  34. Bischof P, Irminger-Finger I (2005) The human cytotrophoblastic cell, a mononuclear chameleon. Int J Biochem Cell Biol 37(1):1–16

    Article  CAS  PubMed  Google Scholar 

  35. Huppertz B (2008) Placental origins of preeclampsia: challenging the current hypothesis. Hypertension 51(4):970–975

    Article  CAS  PubMed  Google Scholar 

  36. Karteris E, Vatish M, Hillhouse EW, Grammatopoulos DK (2005) Preeclampsia is associated with impaired regulation of the placental nitric oxide-cyclic guanosine monophosphate pathway by corticotropin-releasing hormone (CRH) and CRH-related peptides. J Clin Endocrinol Metab 90(6):3680–3687

    Article  CAS  PubMed  Google Scholar 

  37. Chen CP, Chen CY, Yang YC, Su TH, Chen H (2004) Decreased placental GCM1 (glial cells missing) gene expression in pre-eclampsia. Placenta 25(5):413–421

    Article  CAS  PubMed  Google Scholar 

  38. Than NG, Romero R, Xu Y, Erez O, Xu Z, Bhatti G, Leavitt R, Chung TH, El-Azzamy H, LaJeunesse C, Wang B, Balogh A, Szalai G, Land S, Dong Z, Hassan SS, Chaiworapongsa T, Krispin M, Kim CJ, Tarca AL, Papp Z, Bohn H (2014) Evolutionary origins of the placental expression of chromosome 19 cluster galectins and their complex dysregulation in preeclampsia. Placenta 35:855–865

    Article  CAS  PubMed  Google Scholar 

  39. Andraweera PH, Dekker GA, Laurence JA, Roberts CT (2012) Placental expression of VEGF family mRNA in adverse pregnancy outcomes. Placenta 33(6):467–472

    Article  CAS  PubMed  Google Scholar 

  40. Redline RW (2008) Placental pathology: a systematic approach with clinical correlations. Placenta 29(Suppl A):S86–91

    Article  PubMed  Google Scholar 

  41. Ratts VS, Tao XJ, Webster CB, Swanson PE, Smith SD, Brownbill P, Krajewski S, Reed JC, Tilly JL, Nelson DM (2000) Expression of BCL-2, BAX and BAK in the trophoblast layer of the term human placenta: a unique model of apoptosis within a syncytium. Placenta 21(4):361–366

    Article  CAS  PubMed  Google Scholar 

  42. Daoud G, Amyot M, Rassart E, Masse A, Simoneau L, Lafond J (2005) ERK1/2 and p38 regulate trophoblasts differentiation in human term placenta. J Physiol 566(Pt 2):409–423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Cindrova-Davies T, Yung HW, Johns J, Spasic-Boskovic O, Korolchuk S, Jauniaux E, Burton GJ, Charnock-Jones DS (2007) Oxidative stress, gene expression, and protein changes induced in the human placenta during labor. Am J Pathol 171(4):1168–1179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Li M, Wu ZM, Yang H, Huang SJ (2011) NFkappaB and JNK/MAPK activation mediates the production of major macrophage- or dendritic cell-recruiting chemokine in human first trimester decidual cells in response to proinflammatory stimuli. J Clin Endocrinol Metab 96(8):2502–2511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Tang C, Liang J, Qian J, Jin L, Du M, Li M, Li D (2014) Opposing role of JNK-p38 kinase and ERK1/2 in hydrogen peroxide-induced oxidative damage of human trophoblast-like JEG-3 cells. Int J Clin Exp Pathol 7(3):959–968

    PubMed Central  PubMed  Google Scholar 

  46. Huppertz B, Rote NS, Nelson DM, Reister F, Black S, Hunt JS (2001) Apoptosis: molecular control of placental function–a workshop report. Placenta 22(Suppl A):S101–103

    Article  PubMed  Google Scholar 

  47. Longtine MS, Chen B, Odibo AO, Zhong Y, Nelson DM (2012) Villous trophoblast apoptosis is elevated and restricted to cytotrophoblasts in pregnancies complicated by preeclampsia, IUGR, or preeclampsia with IUGR. Placenta 33(5):352–359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Jeschke U, Schiessl B, Mylonas I, Kunze S, Kuhn C, Schulze S, Friese K, Mayr D (2006) Expression of the proliferation marker Ki-67 and of p53 tumor protein in trophoblastic tissue of preeclamptic, HELLP, and intrauterine growth-restricted pregnancies. Int J Gynecol Pathol 25(4):354–360

    Article  PubMed  Google Scholar 

  49. Prusac IK, Zekic Tomas S, Roje D (2011) Apoptosis, proliferation and Fas ligand expression in placental trophoblast from pregnancies complicated by HELLP syndrome or pre-eclampsia. Acta Obstet Gynecol Scand 90(10):1157–1163

    Article  CAS  PubMed  Google Scholar 

  50. Hogg K, Blair JD, von Dadelszen P, Robinson WP (2013) Hypomethylation of the LEP gene in placenta and elevated maternal leptin concentration in early onset pre-eclampsia. Mol Cell Endocrinol 367(1–2):64–73

    Article  CAS  PubMed  Google Scholar 

  51. Sundrani DP, Reddy US, Joshi AA, Mehendale SS, Chavan-Gautam PM, Hardikar AA, Chandak GR, Joshi SR (2013) Differential placental methylation and expression of VEGF, FLT-1 and KDR genes in human term and preterm preeclampsia. Clin Epigenetics 5(1):6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The experiments, analysis and interpretation of data and/or writing of the manuscript were supported, in part, by: the European Union FP6 grant “Pregenesys 037244” (to N.G.T.); the Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD, NIH, DHHS); Federal funds from the NICHD under Contract No. HHSN275201300006C; and the Hungarian Academy of Sciences Momentum grant (#LP2014-7/2014 to N.G.T.). The authors thank everyone who made this work possible, including patients, nurses, lab staff, and clinicians. The authors are grateful to Dr. Katalin Éder, Edit Parsch, Dr. Tibor Várkonyi (Semmelweis University), Po Jen Chiang, Jianhua Du and Dr. Theodore Price (Wayne State University) for their helpful technical assistance, and Sara Tipton (Wayne State University) for her critical reading of the manuscript.

Author Contributions

SzSz, YX, TF and NGT designed research; RR, IK, ZP, and NGT contributed clinical specimens / analytical tools; SzSz, MM, YX, KK, NM, and TK performed research; SzSz, MM, RR, YX, NM, ZX, GB, TF, PH, JR, ALT, SSH, TC, IK, ZP, and NGT analyzed / interpreted data; and SzSz, MM, RR, YX, KK, NM, ZX, GB, TF, PH, TK, JR, ALT, SSH, TC, IK, ZP, and NGT wrote the manuscript.

Disclosure / Conflict of Interest

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roberto Romero, Ilona Kovalszky or Nandor Gabor Than.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 185 kb)

ESM 2

(GIF 23 kb)

High Resolution Image (TIFF 313 kb)

ESM 3

(GIF 35 kb)

High Resolution Image (TIFF 259 kb)

ESM 4

(GIF 41 kb)

High Resolution Image (TIFF 430 kb)

ESM 5

(GIF 130 kb)

High Resolution Image (TIFF 768 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szabo, S., Mody, M., Romero, R. et al. Activation of Villous Trophoblastic p38 and ERK1/2 Signaling Pathways in Preterm Preeclampsia and HELLP Syndrome. Pathol. Oncol. Res. 21, 659–668 (2015). https://doi.org/10.1007/s12253-014-9872-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-014-9872-9

Keywords

Navigation