Skip to main content

Advertisement

Log in

Revealing the Potential Pathogenesis of Glioma by Utilizing a Glioma Associated Protein-Protein Interaction Network

  • Research
  • Published:
Pathology & Oncology Research

Abstract

This study aims to explore the potential mechanism of glioma through bioinformatic approaches. The gene expression profile (GSE4290) of glioma tumor and non-tumor samples was downloaded from Gene Expression Omnibus database. A total of 180 samples were available, including 23 non-tumor and 157 tumor samples. Then the raw data were preprocessed using robust multiarray analysis, and 8,890 differentially expressed genes (DEGs) were identified by using t-test (false discovery rate < 0.0005). Furthermore, 16 known glioma related genes were abstracted from Genetic Association Database. After mapping 8,890 DEGs and 16 known glioma related genes to Human Protein Reference Database, a glioma associated protein-protein interaction network (GAPN) was constructed. In addition, 51 sub-networks in GAPN were screened out through Molecular Complex Detection (score ≥ 1), and sub-network 1 was found to have the closest interaction (score = 3). What’ more, for the top 10 sub-networks, Gene Ontology (GO) enrichment analysis (p value < 0.05) was performed, and DEGs involved in sub-network 1 and 2, such as BRMS1L and CCNA1, were predicted to regulate cell growth, cell cycle, and DNA replication via interacting with known glioma related genes. Finally, the overlaps of DEGs and human essential, housekeeping, tissue-specific genes were calculated (p value = 1.0, 1.0, and 0.00014, respectively) and visualized by Venn Diagram package in R. About 61 % of human tissue-specific genes were DEGs as well. This research shed new light on the pathogenesis of glioma based on DEGs and GAPN, and our findings might provide potential targets for clinical glioma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DEGs:

Differentially expressed genes

GAPN:

Glioma associated protein-protein interaction network

GO:

Gene Ontology

NCBI:

National Center for Biotechnology Information

GEO:

Gene Expression Omnibus

RMA:

Robust multiarray analysis

Gene ID:

Gene identifier

FDR:

False discovery rate

GAD:

Genetic Association Database

HPRD:

Human Protein Reference Database

PPIs:

Protein-protein interactions

MCODE:

Molecular Complex Detection

BINGO:

Biological Networks Gene Ontology tool

BRMS1L:

Breast cancer metastasis suppressor 1-like proteins

BRMS1:

Breast cancer metastasis suppressor 1

CCNA1:

Cyclin A1

MCM4:

Minichromosome maintenance complex component 4

MCM6:

Minichromosome maintenance complex component 6

References

  1. Parney IF (2012) Basic concepts in glioma immunology. Glioma. Springer New York,42–52

  2. Knizhnik AV, Roos WP, Nikolova T et al (2013) Survival and death strategies in glioma cells: autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage. PLoS One 8:e55665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Wang Y, Jiang T (2013) Understanding high grade glioma: molecular mechanism, therapy and comprehensive management. Cancer Lett 331: 139–146.

  4. Heim S, Mitelman F (2011) Cancer cytogenetics: chromosomal and molecular genetic abberations of tumor cells. John Wiley & Sons

  5. Furnari FB, Fenton T, Bachoo RM et al (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710

    Article  CAS  PubMed  Google Scholar 

  6. Kapoor GS, O’rourke DM (2003) Mitogenic signaling cascades in glial tumors. Neurosurgery 52:1425–1435

    Article  PubMed  Google Scholar 

  7. Milinkovic V, Bankovic J, Rakic M et al (2012) Genomic instability and p53 alterations in patients with malignant glioma. Exp Mol Pathol 93:200–206

    Article  CAS  PubMed  Google Scholar 

  8. Bansal K, Liang ML, Rutka JT (2006) Molecular biology of human gliomas. Technol Cancer Res Treat 5:185–194

    Article  CAS  PubMed  Google Scholar 

  9. Sun L, Hui A-M, Su Q et al (2006) Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 9:287–300

    Article  CAS  PubMed  Google Scholar 

  10. Barrett T, Troup DB, Wilhite SE et al (2007) NCBI GEO: mining tens of millions of expression profiles–database and tools update. Nucleic Acids Res 35:D760–765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Barrett T, Troup DB, Wilhite SE et al (2011) NCBI GEO: archive for functional genomics data sets—10 years on. Nucleic Acids Res 39:D1005–D1010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Mccall MN, Bolstad BM, Irizarry RA (2010) Frozen robust multiarray analysis (fRMA). Biostatistics 11:242–253

    Article  PubMed Central  PubMed  Google Scholar 

  13. Gautier L, Irizarry R, Cope L, and Bolstad B (2012) Description of Affy

  14. Falcon S, Gentleman R (2007) Using GOstats to test gene lists for GO term association. Bioinformatics 23:257–258

    Article  CAS  PubMed  Google Scholar 

  15. Abbas A, Kong X-B, Liu Z, Jing B-Y, Gao X (2013) Automatic peak selection by a Benjamini-Hochberg-based algorithm. PLoS One 8:e53112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Becker KG, Barnes KC, Bright TJ, Wang SA (2004) The genetic association database. Nat Genet 36:431–432

    Article  CAS  PubMed  Google Scholar 

  17. Peri S, Navarro JD, Amanchy R et al (2003) Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 13:2363–2371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kohl M, Wiese S, Warscheid B (2011) Cytoscape: software for visualization and analysis of biological networks, in data mining in proteomics. Humana Press. 291–303

  19. Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M (2008) Computing topological parameters of biological networks. Bioinformatics 24:282–284

  20. Zhou T, Yan G, Wang B-H (2005) Maximal planar networks with large clustering coefficient and power-law degree distribution. Phys Rev E 71:046141

    Article  Google Scholar 

  21. Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinforma 4:2

    Article  Google Scholar 

  22. Mi G, Di Y, Emerson S, Cumbie JS, Chang JH (2012) Length bias correction in gene ontology enrichment analysis using logistic regression. PLoS One 7:e46128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449

    Article  CAS  PubMed  Google Scholar 

  24. Li X, Li C, Shang D et al (2011) The implications of relationships between human diseases and metabolic subpathways. PLoS One 6:e21131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Chen H, Boutros P (2011) VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinforma 12:35

    Article  Google Scholar 

  26. Hurst DR, Mehta A, Moore BP et al (2006) Breast cancer metastasis suppressor 1 (BRMS1) is stabilized by the Hsp90 chaperone. Biochem Biophys Res Commun 348:1429–1435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Mei P, Bai J, Shi M et al (2014) BRMS1 suppresses glioma progression by regulating invasion, migration and adhesion of glioma cells. PLoS One 9:e98544

    Article  PubMed Central  PubMed  Google Scholar 

  28. Hurst DR, Welch DR (2011) Unraveling the enigmatic complexities of BRMS1-mediated metastasis suppression. FEBS Lett 585:3185–3190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Nikolaev AY, Papanikolaou NA, Li M, Qin J, Gu W (2004) Identification of a novel BRMS1-homologue protein p40 as a component of the mSin3A/p33<sup>ING1b</sup>/HDAC1 deacetylase complex. Biochem Biophys Res Commun 323:1216–1222

    Article  CAS  PubMed  Google Scholar 

  30. Liu D, Liao C, Wolgemuth DJ (2000) A role for cyclin A1 in the activation of MPF and G2–M transition during meiosis of male germ cells in mice. Dev Biol 224:388–400

    Article  CAS  PubMed  Google Scholar 

  31. Ji T, Liu D, Shao W, Yang W, Wu H, Bian X (2012) Decreased expression of LATS1 is correlated with the progression and prognosis of glioma. J Exp Clin Cancer Res 31:67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Watanabe T, Yokoo H, Yokoo M, Yonekawa Y, Kleihues P, Ohgaki H (2001) Concurrent inactivation of RB1 and TP53 pathways in anaplastic oligodendrogliomas. J Neuropathol Exp Neurol 60:1181–1189

    CAS  PubMed  Google Scholar 

  33. Kanter DM, Bruck I, Kaplan DL (2008) Mcm subunits can assemble into two different active unwinding complexes. J Biol Chem 283:31172–31182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Van Den Boom J, Wolter M, Kuick R et al (2003) Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction. Am J Pathol 163:1033–1043

    Article  PubMed Central  PubMed  Google Scholar 

  35. Dickerson JE, Zhu A, Robertson DL, Hentges KE (2011) Defining the role of essential genes in human disease. PLoS One 6:e27368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Tunbridge EM, Eastwood SL, Harrison PJ (2011) Changed relative to what? Housekeeping genes and normalization strategies in human brain gene expression studies. Biol Psychiatry 69:173–179

    Article  CAS  PubMed  Google Scholar 

  37. Xiao S-J, Zhang C, Zou Q, Ji Z-L (2010) TiSGeD: a database for tissue-specific genes. Bioinformatics 26:1273–1275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Gong X-J, Yu H, Yang C-B, Li Y-F (2012) Knowledge enrichment analysis for human tissue-specific genes uncover new biological insights. J Integr Bioinform 9:194

    PubMed  Google Scholar 

Download references

Conflict of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiran Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, W., Li, G., Yang, X. et al. Revealing the Potential Pathogenesis of Glioma by Utilizing a Glioma Associated Protein-Protein Interaction Network. Pathol. Oncol. Res. 21, 455–462 (2015). https://doi.org/10.1007/s12253-014-9848-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-014-9848-9

Keywords

Navigation