Skip to main content
Log in

Associations Between SNPs Within Antioxidant Genes and the Risk of Prostate Cancer in the Siberian Region of Russia

  • Research
  • Published:
Pathology & Oncology Research

Abstract

In the present study we investigated the association of a number of polymorphic changes in antioxidant system genes (SNPs rs1050450 in the GPX1 gene, rs1695 and rs1138272 in the GSTP1 gene and rs4880 in the MnSOD gene) with the risk of prostate cancer. The association of disease stage and PSA levels with specific genotypes was also analyzed. A study was conducted with the participation of 736 Russian men. We compared the frequency of occurrence of the studied alleles in patients with prostate cancer (392) to a control group (344) of men without a history of cancer. Genotyping was performed by real-time PCR. Comparison of frequencies of alleles and genotypes were performed using logistic regression analysis. No statistically significant association with the risk of prostate cancer was found for any of the SNPs studied (p > 0.05). For SNP rs1695 in the GSTP1 gene, a correlation with cancer disease stage was observed: a GG genotype is significantly more common in patients with PCa in the 3rd and 4th stage than 1st and 2nd (OR[95%CI] = 2.66[1.15–6.18], p = 0.02). Both studied SNPs of GSTP1 gene are associated with the level of PSA: the GG rs1695 and the TT rs1138272 genotypes are associated with higher PSA levels (p = 1.5*10−3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2

Similar content being viewed by others

References

  1. Ames BN, Gold LS, Willett WC (1995) The causes and prevention of cancer. Proc Natl Acad Sci U S A 92(12):5258–5265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Feig DI, Reid TM, Loeb LA (1994) Reactive oxygen species in tumorigenesis. Cancer Res 54(7 Suppl):1890s–1894s

    CAS  PubMed  Google Scholar 

  3. Dreher D, Junod AF (1996) Role of oxygen free radicals in cancer development. Eur J Cancer 32A(1):30–38

    Article  CAS  PubMed  Google Scholar 

  4. Matsui A, Ikeda T, Enomoto K, Hosoda K, Nakashima H, Omae K, Watanabe M, Hibi T, Kitajima M (2000) Increased formation of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, in human breast cancer tissue and its relationship to GSTP1 and COMT genotypes. Cancer Lett 151(1):87–95

    Article  CAS  PubMed  Google Scholar 

  5. Forsberg L, de Faire U, Morgenstern R (2001) Oxidative stress, human genetic variation, and disease. Arch Biochem Biophys 389(1):84–93

    Article  CAS  PubMed  Google Scholar 

  6. Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, Epstein CJ (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11(4):376–381

    Article  CAS  PubMed  Google Scholar 

  7. Rosenblum JS, Gilula NB, Lerner RA (1996) On signal sequence polymorphisms and diseases of distribution. Proc Natl Acad Sci U S A 93(9):4471–4473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Sutton A, Khoury H, Prip-Buus C, Cepanec C, Pessayre D, Degoul F (2003) The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria. Pharmacogenetics 13(3):145–157

    Article  CAS  PubMed  Google Scholar 

  9. Baker AM, Oberley LW, Cohen MB (1997) Expression of antioxidant enzymes in human prostatic adenocarcinoma. Prostate 32(4):229–233

    Article  CAS  PubMed  Google Scholar 

  10. Wang S, Wang F, Shi X, Dai J, Peng Y, Guo X, Wang X, Shen H, Hu Z (2009) Association between manganese superoxide dismutase (MnSOD) Val-9Ala polymorphism and cancer risk - a meta-analysis. Eur J Cancer 45(16):2874–2881. doi:10.1016/j.ejca

    Article  CAS  PubMed  Google Scholar 

  11. Ishida K, Morino T, Takagi K, Sukenaga Y (1987) Nucleotide sequence of a human gene for glutathione peroxidase. Nucleic Acids Res 15(23):10051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kucukgergin C, Gokpinar M, Sanli O, Tefik T, Oktar T, Seckin S (2011) Association between genetic variants in glutathione peroxidase 1 (GPx1) gene, GPx activity and the risk of prostate cancer. Minerva Urol Nefrol 63(3):183–190

    CAS  PubMed  Google Scholar 

  13. Arsova-Sarafinovska Z, Matevska N, Eken A, Petrovski D, Banev S, Dzikova S, Georgiev V, Sikole A, Erdem O, Sayal A, Aydin A, Dimovski AJ (2009) Glutathione peroxidase 1 (GPX1) genetic polymorphism, erythrocyte GPX activity, and prostate cancer risk. Int Urol Nephrol 41(1):63–70. doi:10.1007/s11255-008-9407-y

    Article  CAS  PubMed  Google Scholar 

  14. Choi JY, Neuhouser ML, Barnett M, Hudson M, Kristal AR, Thornquist M, King IB, Goodman GE, Ambrosone CB (2007) Polymorphisms in oxidative stress-related genes are not associated with prostate cancer risk in heavy smokers. Cancer Epidemiol Biomarkers Prev 16(6):1115–1120

    Article  CAS  PubMed  Google Scholar 

  15. Board PG, Webb GC, Coggan M (1989) Isolation of a cDNA clone and localization of the human glutathione S-transferase 3 genes to chromosome bands 11q13 and 12q13-14. Ann Hum Genet 53(Pt 3):205–213

    Article  CAS  PubMed  Google Scholar 

  16. Nelson WG, De Marzo AM, DeWeese TL, Isaacs WB (2004) The role of inflammation in the pathogenesis of prostate cancer. J Urol 172(5 Pt 2):S6–S11, discussion S11–12

    Article  CAS  PubMed  Google Scholar 

  17. Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, Hsieh WS, Isaacs WB, Nelson WG (1994) Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci U S A 91(24):11733–11737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lin X, Tascilar M, Lee WH, Vles WJ, Lee BH, Veeraswamy R, Asgari K, Freije D, van Rees B, Gage WR, Bova GS, Isaacs WB, Brooks JD, DeWeese TL, De Marzo AM, Nelson WG (2001) GSTP1 CpG island hypermethylation is responsible for the absence of GSTP1 expression in human prostate cancer cells. Am J Pathol 159(5):1815–1826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Wigginton JE, Cutler DJ, Abecasis GR (2005) A note on exact tests of Hardy-Weinberg equilibrium. Am J Hum Genet 76(5):887–893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Gaunt TR, Rodriguez S, Day IN (2007) Cubic exact solutions for the estimation of pairwise haplotype frequencies: implications for linkage disequilibrium analyses and a web tool ‘CubeX’. BMC Bioinforma 8:428

    Article  Google Scholar 

  21. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 70(2):425–434

    Article  PubMed Central  PubMed  Google Scholar 

  22. Emerit I (1994) Reactive oxygen species, chromosome mutation, and cancer: possible role of clastogenic factors in carcinogenesis. Free Radic Biol Med 16(1):99–109

    Article  CAS  PubMed  Google Scholar 

  23. Woodson K, Tangrea JA, Lehman TA, Modali R, Taylor KM, Snyder K, Taylor PR, Virtamo J, Albanes D (2003) Manganese superoxide dismutase (MnSOD) polymorphism, alpha-tocopherol supplementation and prostate cancer risk in the alpha-tocopherol, beta-carotene cancer prevention study (Finland). Cancer Causes Control 14(6):513–518

    Article  PubMed  Google Scholar 

  24. Rose DP, Boyar AP, Wynder EL (1986) International comparisons of mortality rates for cancer of the breast, ovary, prostate, and colon, and per capita food consumption. Cancer 58(11):2363–2371

    Article  CAS  PubMed  Google Scholar 

  25. Fair WR, Fleshner NE, Heston W (1997) Cancer of the prostate: a nutritional disease? Urology 50(6):840–848

    Article  CAS  PubMed  Google Scholar 

  26. Fleshner NE, Kucuk O (2001) Antioxidant dietary supplements: rationale and current status as chemopreventive agents for prostate cancer. Urology 57(4 Suppl 1):90–94

    Article  CAS  PubMed  Google Scholar 

  27. Wei H (1992) Activation of oncogenes and/or inactivation of anti-oncogenes by reactive oxygen species. Med Hypotheses 39(3):267–270

    Article  CAS  PubMed  Google Scholar 

  28. Hainaut P, Milner J (1993) Redox modulation of p53 conformation and sequence-specific DNA binding in vitro. Cancer Res 53(19):4469–4473

    CAS  PubMed  Google Scholar 

  29. Navone NM, Troncoso P, Pisters LL, Goodrow TL, Palmer JL, Nichols WW, von Eschenbach AC, Conti CJ (1993) p53 protein accumulation and gene mutation in the progression of human prostate carcinoma. J Natl Cancer Inst 85(20):1657–1669

    Article  CAS  PubMed  Google Scholar 

  30. Yossepowitch O, Pinchuk I, Gur U, Neumann A, Lichtenberg D, Baniel J (2007) Advanced but not localized prostate cancer is associated with increased oxidative stress. J Urol 178(4 Pt 1):1238–1243, discussion 1243-1234

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. А. Oskina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oskina, N.А., Еrmolenko, N.А., Boyarskih, U.А. et al. Associations Between SNPs Within Antioxidant Genes and the Risk of Prostate Cancer in the Siberian Region of Russia. Pathol. Oncol. Res. 20, 635–640 (2014). https://doi.org/10.1007/s12253-014-9742-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-014-9742-5

Keywords

Navigation