Skip to main content

Advertisement

Log in

Menthol Inhibits the Proliferation and Motility of Prostate Cancer DU145 Cells

  • Research
  • Published:
Pathology & Oncology Research

An Erratum to this article was published on 27 January 2016

Abstract

In recent years, the transient receptor potential melastatin member 8 (TRPM8) channel has emerged as a promising prognostic marker and putative therapeutic target in prostate cancer. We have found that forced overexpression of TRPM8 in PC-3 cells can inhibit the cell proliferation and motility probably through the TRPM8 activation. In this study, we aimed to investigate whether activating the TRPM8 channel by its selective agonist menthol can inhibit the proliferation and motility of androgen-independent prostate cancer (AIPC) with remarkable expression of TRPM8. Menthol is a naturally occurring compound, which has been widely used in cosmetics and pharmaceutical products, and also as flavoring in food. DU145 cells are androgen-independent but have a remarkable expression of TRPM8. The demonstration of the existence of TRPM8 and the absence of TRPA1 in DU145 cells provided the foundation for the following experiments, because both TRPM8 and TRPA1 are molecular targets of menthol. The outcome of MTT assay indicated that menthol inhibited the cell growth (p < 0.01). Cell cycle distribution and scratch assay analysis revealed that menthol induced cell cycle arrest at the G0/G1 phase (p < 0.01). Furthermore, menthol inhibited the migration of DU145 cells by downregulating the focal-adhesion kinase. So it suggests that the activation of the existing TRPM8 channels may serve as a potential and pragmatic treatment for those AIPC with remarkable expression of TRPM8, and menthol is a useful compound for future development as an anticancer agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E et al (2007) Cancer statistics, 2007. CA Cancer J Clin 57(1):43–66

    Article  PubMed  Google Scholar 

  2. Chen Y, Clegg NJ, Scher HI (2009) Anti-androgens and androgen-depleting therapies in prostate cancer: new agents for an established target. Lancet Oncol 10(10):981–991

    Article  PubMed  Google Scholar 

  3. Rosenthal SA, Sandler HM (2010) Treatment strategies for high-risk locally advanced prostate cancer. Nat Rev Urol 7(1):31–38

    Article  PubMed  CAS  Google Scholar 

  4. Taplin ME (2007) Drug insight: role of the androgen receptor in the development and progression of prostate cancer. Nat Clin Pract Oncol 4(4):236–244

    Article  PubMed  CAS  Google Scholar 

  5. Damber JE, Aus G (2008) Prostate cancer. Lancet 371(9625):1710–1721

    Article  PubMed  Google Scholar 

  6. Legrand G, Humez S, Slomianny C et al (2001) Ca2+ pools and cell growth. Evidence for sarcoendoplasmic Ca2+-ATPases 2B involvement in human prostate cancer cell growth control. J Biol Chem 276(50):47608–47614

    Article  PubMed  CAS  Google Scholar 

  7. Thebault S, Flourakis M, Vanoverberghe K et al (2006) Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Res 66(4):2038–2047

    Article  PubMed  CAS  Google Scholar 

  8. Vanoverberghe K, Vanden Abeele F, Mariot P et al (2004) Ca2+ homeostasis and apoptotic resistance of neuroendocrine-differentiated prostate cancer cells. Cell Death Differ 11(3):321–330

    Article  PubMed  CAS  Google Scholar 

  9. Skryma R, Mariot P, Bourhis XL et al (2000) Store depletion and store-operated Ca2+ current in human prostate cancer LNCaP cells: involvement in apoptosis. J Physiol 527(Pt 1):71–83

    Article  PubMed  CAS  Google Scholar 

  10. Vanden Abeele F, Skryma R, Shuba Y et al (2002) Bcl-2-dependent modulation of Ca(2+) homeostasis and store-operated channels in prostate cancer cells. Cancer Cell 1(2):169–179

    Article  PubMed  CAS  Google Scholar 

  11. Vanden Abeele F, Roudbaraki M, Shuba Y, Skryma R, Prevarskaya N (2003) Store-operated Ca2+ current in prostate cancer epithelial cells. Role of endogenous Ca2+ transporter type 1. J Biol Chem 278(17):15381–15389

    Article  Google Scholar 

  12. Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ (2007) Calcium and cancer: targeting Ca2+ transport. Nat Rev Cancer 7(7):519–530

    Article  PubMed  CAS  Google Scholar 

  13. Tsavaler L, Shapero MH, Morkowski S, Laus R (2001) Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res 61(9):3760–3769

    PubMed  CAS  Google Scholar 

  14. Henshall SM, Afar DE, Hiller J et al (2003) Survival analysis of genome-wide gene expression profiles of prostate cancers identifies new prognostic targets of disease relapse. Cancer Res 63(14):4196–4203

    PubMed  CAS  Google Scholar 

  15. Yang ZH, Wang XH, Wang HP, Hu LQ (2009) Effects of TRPM8 on the proliferation and motility of prostate cancer PC-3 cells. Asian J Androl 11(2):157–165

    Article  PubMed  CAS  Google Scholar 

  16. Patel T, Ishiuji Y, Yosipovitch G (2007) Menthol: a refreshing look at this ancient compound. J Am Acad Dermatol 57(5):873–878

    Article  PubMed  Google Scholar 

  17. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416(6876):52–58

    Article  PubMed  CAS  Google Scholar 

  18. Peier AM, Moqrich A, Hergarden AC et al (2002) A TRP channel that senses cold stimuli and menthol. Cell 108(5):705–715

    Article  PubMed  CAS  Google Scholar 

  19. Zhang L (2004) Evidence that TRPM8 is an androgen-dependent Ca2+ channel required for the survival of prostate cancer cells. Cancer Res 64(22):8365–8373

    Article  PubMed  CAS  Google Scholar 

  20. Valero M, Morenilla-Palao C, Belmonte C, Viana F (2010) Pharmacological and functional properties of TRPM8 channels in prostate tumor cells. Pflugers Arch-Eur J Physiol 461(1):99–114

    Google Scholar 

  21. Kim S, Nam J, Park E, Kim B, So I, Jeon J (2009) Menthol regulates TRPM8-independent processes in PC-3 prostate cancer cells. BBA-Mol Basis Dis 1792(1):33–38

    Article  CAS  Google Scholar 

  22. Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS (2005) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434(7034):786–792

    Article  PubMed  CAS  Google Scholar 

  23. Story GM, Peier AM, Reeve AJ et al (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112(6):819–829

    Article  PubMed  CAS  Google Scholar 

  24. Bidaux G, Roudbaraki M, Merle C et al (2005) Evidence for specific TRPM8 expression in human prostate secretory epithelial cells: functional androgen receptor requirement. Endocr Relat Cancer 12(2):367–382

    Article  PubMed  CAS  Google Scholar 

  25. RIFM (Research Institute for Fragrance Materials, Inc.) (1975) Mutagenic evaluation of compound FDA 71–57, menthol. NTIS PB-245-444 (FDA 71–268). Unpublishee report from Food and Drug Administration, 14 January. Report Number 5713, RIFM, Woodcliff Lake, NJ, USA

  26. Bernson VSM, Pettersson B (1983) The toxicity of menthol in short-term bioassays. Chem-Biol Interactions 46:233–246

    Article  CAS  Google Scholar 

  27. Yamamura H, Ugawa S, Ueda T, Morita A, Shimada S (2008) TRPM8 activation suppresses cellular viability in human melanoma. Am J Physiol Cell Physiol 295:C296–C301

    Article  PubMed  CAS  Google Scholar 

  28. Lapenna S, Giordano A (2009) Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov 8(7):547–566

    Article  PubMed  CAS  Google Scholar 

  29. Pines J (1995) Cyclins and cyclin-dependent kinases: a biochemical view. Biochem J 308(Pt 3):697–711

    PubMed  CAS  Google Scholar 

  30. Brooke GN, Bevan CL (2009) The role of androgen receptor mutations in prostate cancer progression. Curr Genomics 10(1):18–25

    Article  PubMed  CAS  Google Scholar 

  31. Schlaepfer DD, Mitra SK, Ilic D (2004) Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim Biophys Acta 1692(2–3):77–102

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of Natural Science Foundation of China (N0.81172734).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghuan Wang.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12253-015-0039-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Wang, X., Yang, Z. et al. Menthol Inhibits the Proliferation and Motility of Prostate Cancer DU145 Cells. Pathol. Oncol. Res. 18, 903–910 (2012). https://doi.org/10.1007/s12253-012-9520-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-012-9520-1

Keywords

Navigation