Skip to main content
Log in

Viral metagenomics analysis of planktonic viruses in East Lake, Wuhan, China

  • Research Article
  • Published:
Virologica Sinica

Abstract

East Lake (Lake Donghu), located in Wuhan, China, is a typical city freshwater lake that has been experiencing eutrophic conditions and algal blooming during recent years. Marine and fresh water are considered to contain a large number of viruses. However, little is known about their genetic diversity because of the limited techniques for culturing viruses. In this study, we conducted a viral metagenomic analysis using a high-throughput sequencing technique with samples collected from East Lake in Spring, Summer, Autumn, and Winter. The libraries from four samples each generated 234,669, 71,837, 12,820, and 34,236 contigs (> 90 bp each), respectively. The genetic structure of the viral community revealed a high genetic diversity covering 23 viral families, with the majority of contigs homologous to DNA viruses, including members of Myoviridae, Podoviridae, Siphoviridae, Phycodnaviridae, and Microviridae, which infect bacteria or algae, and members of Circoviridae, which infect invertebrates and vertebrates. The highest viral genetic diversity occurred in samples collected in August, then December and June, and the least diversity in March. Most contigs have low-sequence identities with known viruses. PCR detection targeting the conserved sequences of genes (g20, psbA, psbD, and DNApol) of cyanophages further confirmed that there are novel cyanophages in the East Lake. Our viral metagenomic data provide the first preliminary understanding of the virome in one freshwater lake in China and would be helpful for novel virus discovery and the control of algal blooming in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abedon S T. 2009. Phage evolution and ecology. Adv Appl Microbiol, 67: 1–45.

    Article  PubMed  CAS  Google Scholar 

  • Ackermann H W. 1998. Tailed bacteriophages: the order caudovirales. Adv Virus Res, 51: 135–201.

    Article  PubMed  CAS  Google Scholar 

  • Angly F E, Felts B, Breitbart M, Salamon P, Edwards R A, Carlson C, Chan A M, Haynes M, Kelley S, Liu H, Mahaffy J M, Mueller J E, Nulton J, Olson R, Parsons R, Rayhawk S, Suttle C A, and Rohwer F. 2006. The marine viromes of four oceanic regions. Plos Biology, 4: 2121–2131.

    Article  CAS  Google Scholar 

  • Benko M, and Harrach B. 2003. Molecular evolution of adenoviruses. Curr Top Microbiol Immunol, 272: 3–35.

    Article  PubMed  CAS  Google Scholar 

  • Cantalupo P G, Calgua B, Zhao G Y, Hundesa A, Wier A D, Katz J P, Grabe M, Hendrix R W, Girones R, Wang D, and Pipas J M. 2011. Raw Sewage Harbors Diverse Viral Populations. Mbio, 2(5): e00180–11.

    Article  PubMed  Google Scholar 

  • Carmichael W W. 2001. Health effects of toxin-producing cyanobacteria: “The CyanoHABs”. Hum Ecol Risk Assess, 7: 1393–1407.

    Article  Google Scholar 

  • Chenard C, and Suttle C A. 2008. Phylogenetic diversity of sequences of cyanophage photosynthetic gene psbA in marine and freshwaters. Appl Environ Microbiol, 74: 5317–5324.

    Article  PubMed  CAS  Google Scholar 

  • Claverie J M, Abergel C, and Ogata H. 2009. Mimivirus. Curr Top Microbiol Immunol, 328: 89–121.

    Article  PubMed  CAS  Google Scholar 

  • Davison A J. 2002. Evolution of the herpesviruses. Vet Microbiol, 86: 69–88.

    Article  PubMed  CAS  Google Scholar 

  • Delwart E, and Li L L. 2012. Rapidly expanding genetic diversity and host range of the Circoviridae viral family and other Rep encoding small circular ssDNA genomes. Virus Res, 164: 114–121.

    Article  PubMed  CAS  Google Scholar 

  • Djikeng A, Kuzmickas R, Anderson N G, and Spiro D J. 2009. Metagenomic analysis of RNA viruses in a fresh water lake. PLoS One, 4: e7264.

    Article  PubMed  Google Scholar 

  • Escobedo-Bonilla C M, Alday-Sanz V, Wille M, Sorgeloos P, Pensaert M B, and Nauwynck H J. 2008. A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome virus. J Fish Dis, 31: 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Federici B A, Bideshi D K, Tan Y, Spears T, and Bigot Y. 2009. Ascoviruses: superb manipulators of apoptosis for viral replication and transmission. Curr Top Microbiol Immunol, 328: 171–196.

    Article  PubMed  CAS  Google Scholar 

  • Fischer U R, and Velimirov B. 2002. High control of bacterial production by viruses in a eutrophic oxbow lake. Aquat Microb Ecol, 27: 1–12.

    Article  Google Scholar 

  • Fitzgerald L A, Graves M V, Li X, Feldblyum T, Hartigan J, and Van Etten J L. 2007. Sequence and annotation of the 314-kb MT325 and the 321-kb FR483 viruses that infect Chlorella Pbi. Virology, 358: 459–471.

    Article  PubMed  CAS  Google Scholar 

  • Gao E B, Gui J F, and Zhang Q Y. 2012. A novel cyanophage with a cyanobacterial nonbleaching protein A gene in the genome. J Virol, 86: 236–245.

    Article  PubMed  CAS  Google Scholar 

  • Ge X, Li Y, Yang X, Zhang H, Zhou P, Zhang Y, and Shi Z. 2012. Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China. J Virol, 86: 4620–4630.

    Article  PubMed  CAS  Google Scholar 

  • Grigoras I, Timchenko T, Grande-Perez A, Katul L, Vetten H J, and Gronenborn B. 2012. High variability and rapid evolution of a nanovirus. J Virol, 84: 9105–9117.

    Article  Google Scholar 

  • Hueffer K, and Parrish C R. 2003. Parvovirus host range, cell tropism and evolution. Curr Opin Microbiol, 6: 392–398.

    Article  PubMed  CAS  Google Scholar 

  • Hughes A L, Irausquin S, and Friedman R. 2010. The evolutionary biology of poxviruses. Infect Genet Evol, 10: 50–59.

    Article  PubMed  CAS  Google Scholar 

  • Kelly B J, King L A, and Possee R D. 2007. Introduction to baculovirus molecular biology. Methods Mol Biol, 388: 25–54.

    Article  PubMed  CAS  Google Scholar 

  • Labrie S J, Frois-Moniz K, Osburne M S, Kelly L, Roggensack S E, Sullivan M B, Gearin G, Zeng Q, Fitzgerald M, Henn M R, and Chisholm S W. 2013. Genomes of marine cyanopodoviruses reveal multiple origins of diversity. Environ Microbiol, 15: 1356–1376.

    Article  PubMed  CAS  Google Scholar 

  • Larsen J B, Larsen A, Bratbak G, and Sandaa R A. 2008. Phylogenetic analysis of members of the Phycodnaviridae virus family, using amplified fragments of the major capsid protein gene. Appl Environ Microbiol, 74: 3048–3057.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y M, Zhang Q Y, and Yuan X P. 2005. Abundance and diversity of virioplankton in Lake Donghu, Wuhan. Acta Hydrobiology Sinica 29: 1–6.

    Google Scholar 

  • Liu Y M, Zhang Q Y, Yuan X P, Li Z Q, and Gui J F. 2006. Seasonal variation of virioplankton in a eutrophic shallow lake. Hydrobiologia, 560: 323–334.

    Article  Google Scholar 

  • Lopez-Bueno A, Tamames J, Velazquez D, Moya A, Quesada A, and Alcami A. 2009. High diversity of the viral community from an Antarctic lake. Science, 326: 858–861.

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Chen F, and Hodson R E. 2001. Distribution, isolation, host specificity, and diversity of cyanophages infecting marine Synechococcus spp. in river estuaries. Appl Environ Microbiol, 67: 3285–3290.

    Article  PubMed  CAS  Google Scholar 

  • Maranger R, and Bird D F. 1995. Viral Abundance in Aquatic Systems — a Comparison between Marine and Fresh-Waters. Mar Ecol Prog Ser, 121: 217–226.

    Article  Google Scholar 

  • Marston M F, Pierciey F J, Jr., Shepard A, Gearin G, Qi J, Yandava C, Schuster S C, Henn M R, and Martiny J B. 2012. Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci U S A, 109: 4544–4549.

    Article  PubMed  CAS  Google Scholar 

  • Marvin D A. 1990. Model-Building Studies of Inovirus — Genetic Variations on a Geometric Theme. Int J Biol Macromol, 12: 125–138.

    Article  PubMed  CAS  Google Scholar 

  • Muhire B, Martin D P, Brown J K, Navas-Castillo J, Moriones E, Zerbini F M, Rivera-Bustamante R, Malathi V G, Briddon R W, and Varsani A. 2013. A genome-wide pairwise-identity-based proposal for the classification of viruses in the genus Mastrevirus (family Geminiviridae). Arch Virol, 158(6):1411–24.

    Article  PubMed  CAS  Google Scholar 

  • Peng L, Liu Y, Chen W, Liu L, Kent M, and Song L. 2010. Health risks associated with consumption of microcystin-contaminated fish and shellfish in three Chinese lakes: significance for freshwater aquacultures. Ecotoxicol Environ Saf, 73: 1804–1811.

    Article  PubMed  CAS  Google Scholar 

  • Phan T G, Kapusinszky B, Wang C, Rose R K, Lipton H L, and Delwart E L. 2011. The fecal viral flora of wild rodents. PLoS Pathog, 7: e1002218.

    Article  PubMed  CAS  Google Scholar 

  • Prangishvili D, and Garrett R A. 2004. Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses. Biochem Soc Trans, 32: 204–208.

    Article  PubMed  CAS  Google Scholar 

  • Proctor L M, and Fuhrman J A. 1990. Viral Mortality of Marine-Bacteria and Cyanobacteria. Nature, 343: 60–62.

    Article  Google Scholar 

  • Qin B. 2002. Approaches to mechanisms and control of eutrophication of shallow lakes. in the middle and lower reaches of the Yangze River. Hupo Kexue, 14: 193–202.

    CAS  Google Scholar 

  • Raytcheva D A, Haase-Pettingell C, Piret J M, and King J A. 2011. Intracellular Assembly of Cyanophage Syn5 Proceeds through a Scaffold-Containing Procapsid. J Virol, 85: 2406–2415.

    Article  PubMed  CAS  Google Scholar 

  • Roux S, Krupovic M, Poulet A, Debroas D, and Enault F. 2012. Evolution and Diversity of the Microviridae Viral Family through a Collection of 81 New Complete Genomes Assembled from Virome Reads. Plos One, 7.

  • Short C M, and Suttle C A. 2005. Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl Environ Microbiol, 71: 480–486.

    Article  PubMed  CAS  Google Scholar 

  • Song L, Chen W, Peng L, Wan N, Gan N, and Zhang X. 2007. Distribution and bioaccumulation of microcystins in water columns: a systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay, Lake Taihu. Water Res, 41: 2853–2864.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan M B, Waterbury J B, and Chisholm S W. 2003. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature, 424: 1047–1051.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan M B, Lindell D, Lee J A, Thompson L R, Bielawski J P, and Chisholm S W. 2006. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol, 4: e234.

    Article  PubMed  Google Scholar 

  • Sullivan M B, Coleman M L, Quinlivan V, Rosenkrantz J E, DeFrancesco A S, Tan G, Fu R, Lee J A, Waterbury J B, Bielawski J P, and Chisholm S W. 2008. Portal protein diversity and phage ecology. Environ Microbiol, 10: 2810–2823.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan M B, Huang K H, Ignacio-Espinoza J C, Berlin A M, Kelly L, Weigele P R, DeFrancesco A S, Kern S E, Thompson L R, Young S, Yandava C, Fu R, Krastins B, Chase M, Sarracino D, Osburne M S, Henn M R, and Chisholm S W. 2010. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol, 12: 3035–3056.

    Article  PubMed  CAS  Google Scholar 

  • Suttle C A. 2005. Viruses in the sea. Nature, 437: 356–361.

    Article  PubMed  CAS  Google Scholar 

  • Suttle C A, and Chan A M. 1994. Dynamics and Distribution of Cyanophages and Their Effect on Marine Synechococcus Spp. Appl Environ Microbiol, 60: 3167–3174.

    PubMed  CAS  Google Scholar 

  • Thurber R V, Haynes M, Breitbart M, Wegley L, and Rohwer F. 2009. Laboratory procedures to generate viral metagenomes. Nature Protocols, 4: 470–483.

    Article  PubMed  CAS  Google Scholar 

  • Turnbull M, and Webb B. 2002. Perspectives on polydnavirus origins and evolution. Adv Virus Res, 58: 203–254.

    Article  PubMed  CAS  Google Scholar 

  • Van Duin J T N. 2006. The bacteriophages, 2nd ed. Oxford University Press, New York.

    Google Scholar 

  • Waltzek T B, Kelley G O, Alfaro M E, Kurobe T, Davison A J, and Hedrick R P. 2009. Phylogenetic relationships in the family Alloherpesviridae. Dis Aquat Organ, 84: 179–194.

    Article  PubMed  CAS  Google Scholar 

  • Wang K, and Chen F. 2004. Genetic diversity and population dynamics of cyanophage communities in the Chesapeake Bay. Aquat Microb Ecol, 34: 105–116.

    Article  Google Scholar 

  • Weinbauer M G, and Hofle M G. 1998. Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl Environ Microbiol, 64: 431–438.

    PubMed  CAS  Google Scholar 

  • Williams T, Barbosa-Solomieu V, and Chinchar V G. 2005. A decade of advances in iridovirus research. Adv Virus Res, 65: 173–248.

    Article  PubMed  CAS  Google Scholar 

  • Williamson S J, Rusch D B, Yooseph S, Halpern A L, Heidelberg K B, Glass J I, Andrews-Pfannkoch C, Fadrosh D, Miller C S, Sutton G, Frazier M, and Venter J C. 2008. The Sorcerer II Global Ocean Sampling Expedition: Metagenomic Characterization of Viruses within Aquatic Microbial Samples. Plos One, 3(1): e1456.

    Article  PubMed  Google Scholar 

  • Wilson. W H, Etten. J L V, Schroeder. D S, Nagasaki. K, Brussaard. C, Delaroque. N, Bratbak. G, and Suttle C. 2005. Phycodnaviridae, vol. Eighth Report of the International Committee of the Taxonomy of Viruses. Elsevier Academic Press, San Diego.

    Google Scholar 

  • Yamada T, Onimatsu H, and Van Etten J L. 2006. Chlorella viruses. Adv Virus Res, 66: 293–336.

    Article  PubMed  CAS  Google Scholar 

  • Yanai-Balser G M, Duncan G A, Eudy J D, Wang D, Li X, Agarkova I V, Dunigan D D, and Van Etten J L. 2010. Microarray analysis of Paramecium bursaria chlorella virus 1 transcription. J Virol, 84: 532–542.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Takashima Y, Tomaru Y, Shirai Y, Takao Y, Hiroishi S, and Nagasaki K. 2006. Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol, 72: 1239–1247.

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Breitbart M, Lee W H, Run J Q, Wei C L, Soh S W, Hibberd M L, Liu E T, Rohwer F, and Ruan Y. 2006. RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol, 4: e3.

    Article  PubMed  Google Scholar 

  • Zhong Y, Chen F, Wilhelm S W, Poorvin L, and Hodson R E. 2002. Phylogenetic diversity of marine cyanophage isolates and natural virus communities as revealed by sequences of viral capsid assembly protein gene g20. Appl Environ Microbiol, 68: 1576–1584.

    Article  PubMed  CAS  Google Scholar 

  • Zhou J Z C, Wang L L. 2009. Study on characteristic of algae growth in Tai Lake based on nonlinear dynamic analysis. Acta Hydrobiologica Sinica, 33(5): 931–936.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengli Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, X., Wu, Y., Wang, M. et al. Viral metagenomics analysis of planktonic viruses in East Lake, Wuhan, China. Virol. Sin. 28, 280–290 (2013). https://doi.org/10.1007/s12250-013-3365-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-013-3365-y

Keywords

Navigation