Skip to main content

Advertisement

Log in

Functional inferences of environmental coccolithovirus biodiversity

Virologica Sinica

Abstract

The cosmopolitan calcifying alga Emiliania huxleyi is one of the most abundant bloom forming coccolithophore species in the oceans and plays an important role in global biogeochemical cycling. Coccolithoviruses are a major cause of coccolithophore bloom termination and have been studied in laboratory, mesocosm and open ocean studies. However, little is known about the dynamic interactions between the host and its viruses, and less is known about the natural diversity and role of functionally important genes within natural coccolithovirus communities. Here, we investigate the temporal and spatial distribution of coccolithoviruses by the use of molecular fingerprinting techniques PCR, DGGE and genomic sequencing. The natural biodiversity of the virus genes encoding the major capsid protein (MCP) and serine palmitoyltransferase (SPT) were analysed in samples obtained from the Atlantic Meridional Transect (AMT), the North Sea and the L4 site in the Western Channel Observatory. We discovered nine new coccolithovirus genotypes across the AMT and L4 site, with the majority of MCP sequences observed at the deep chlorophyll maximum layer of the sampled sites on the transect. We also found four new SPT gene variations in the North Sea and at L4. Their translated fragments and the full protein sequence of SPT from laboratory strains EhV-86 and EhV-99B1 were modelled and revealed that the theoretical fold differs among strains. Variation identified in the structural distance between the two domains of the SPT protein may have an impact on the catalytic capabilities of its active site. In summary, the combined use of ‘standard’ markers (i.e. MCP), in combination with metabolically relevant markers (i.e. SPT) are useful in the study of the phylogeny and functional biodiversity of coccolithoviruses, and can provide an interesting intracellular insight into the evolution of these viruses and their ability to infect and replicate within their algal hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Abrescia N G, Bamford D H, Grimes J M, and Stuart D I. 2012. Structure unifies the viral universe. Annu Rev Biochem, 81: 795–822.

    Article  PubMed  CAS  Google Scholar 

  • Allen M J, Schroeder D C, Holden M T, and Wilson W H. 2006. Evolutionary History of the Coccolithoviridae. Mol Biol Evol, 23: 86–92.

    Article  PubMed  CAS  Google Scholar 

  • Allen M J, Schroeder D C, Donkin A, Crawfurd K J, and Wilson W H. 2006. Genome comparison of two Coccolithoviruses. Virol J, 3: 15.

    Article  PubMed  Google Scholar 

  • Allen M J, Martinez-Martinez J, Schroeder D C, Somerfield P J, and Wilson W H. 2007. Use of microarrays to assess viral diversity: from genotype to phenotype. Environ Microbiol, 9: 971–982.

    Article  PubMed  CAS  Google Scholar 

  • Allen M J, Forster T, Schroeder D C, Hall M, Roy D, Ghazal P, and Wilson W H. 2006. Locus-specific gene expression pattern suggests a unique propagation strategy for a giant algal virus. J Virol, 80: 7699–7705.

    Article  PubMed  CAS  Google Scholar 

  • Bamford D H, Grimes J M, and Stuart D I. 2005. What does structure tell us about virus evolution?. Curr Opin Struct Biol, 15: 655–663.

    Article  PubMed  CAS  Google Scholar 

  • Bidle K D, and Vardi A. 2011. A chemical arms race at sea mediates algal host-virus interactions. Curr Opin Microbiol, 14: 449–457.

    Article  PubMed  Google Scholar 

  • Bidle K D, Haramaty L, Barcelos E R J, and Falkowski P. 2007. Viral activation and recruitment of metacaspases in the unicellular coccolithophore, Emiliania huxleyi. Proc Natl Acad Sci U S A, 104: 6049–6054.

    Article  PubMed  CAS  Google Scholar 

  • Brussaard C P, Marie D, and Bratbak G. 2000. Flow cytometric detection of viruses. J Virol Methods, 85: 175–182.

    Article  PubMed  CAS  Google Scholar 

  • Brussaard C P, Wilhelm S W, Thingstad F, Weinbauer M G, Bratbak G, Heldal M, Kimmance S A, Middelboe M, Nagasaki K, Paul J H, Schroeder D C, Suttle C A, Vaque D, and Wommack K E. 2008. Global-scale processes with a nanoscale drive: the role of marine viruses. ISME J, 2: 575–578.

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Suttle C A, and Short S M. 1996. Genetic diversity in marine algal virus communities as revealed by sequence analysis of DNA polymerase genes. Appl Environ Microbiol, 62: 2869–2874.

    PubMed  CAS  Google Scholar 

  • Coolen M J. 2011. 7000 years of Emiliania huxleyi viruses in the Black Sea. Science, 333: 451–452.

    Article  PubMed  CAS  Google Scholar 

  • de Wit R, and Bouvier T. 2006. ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say?. Environ Microbiol, 8: 755–758.

    Article  PubMed  Google Scholar 

  • Falkowski P G, Fenchel T, and Delong E F. 2008. The microbial engines that drive Earth’s biogeochemical cycles. Science, 320: 1034–1039.

    Article  PubMed  CAS  Google Scholar 

  • Guex N, and Peitsch M C. 1997. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis, 18: 2714–2723.

    Article  PubMed  CAS  Google Scholar 

  • Han G, Gable K, Yan L, Allen M J, Wilson W H, Moitra P, Harmon J M, and Dunn T M. 2006. Expression of a novel marine viral single-chain serine palmitoyltransferase and construction of yeast and mammalian single-chain chimera. J Biol Chem, 281: 39935–39942.

    Article  PubMed  CAS  Google Scholar 

  • Hanson R. 2010. Jmol — a paradigm shift in crystallographic visualization. Journal of Applied Crystallography, 43: 1250–1260.

    Article  CAS  Google Scholar 

  • Hartshorn M J. 2002. AstexViewer: a visualisation aid for structure-based drug design. J Comput Aided Mol Des, 16: 871–881.

    Article  PubMed  CAS  Google Scholar 

  • Kelley L A, and Sternberg M J. 2009. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc, 4: 363–371.

    Article  PubMed  CAS  Google Scholar 

  • Krupovic M, and Bamford D H. 2008. Virus evolution: how far does the double beta-barrel viral lineage extend? Nat Rev Microbiol, 6: 941–948.

    Article  PubMed  CAS  Google Scholar 

  • Krupovic M, and Bamford D H. 2011. Double-stranded DNA viruses: 20 families and only five different architectural principles for virion assembly. Curr Opin Virol, 1: 118–124.

    Article  PubMed  CAS  Google Scholar 

  • Larsen J B, Larsen A, Bratbak G, and Sandaa R A. 2008. Phylogenetic analysis of members of the Phycodnaviridae virus family, using amplified fragments of the major capsid protein gene. Appl Environ Microbiol, 74: 3048–3057.

    Article  PubMed  CAS  Google Scholar 

  • Martinez J M, Schroeder D C, and Wilson W H. 2012. Dynamics and genotypic composition of Emiliania huxleyi and their co-occurring viruses during a coccolithophore bloom in the North Sea. FEMS Microbiol Ecol, 81: 315–323.

    Article  PubMed  CAS  Google Scholar 

  • Martinez J M, Schroeder D C, Larsen A, Bratbak G, and Wilson W H. 2007. Molecular dynamics of Emiliania huxleyi and cooccurring viruses during two separate mesocosm studies. Appl Environ Microbiol, 73: 554–562.

    Article  PubMed  CAS  Google Scholar 

  • Michaelson L V, Dunn T M, and Napier J A. 2010. Viral trans-dominant manipulation of algal sphingolipids. Trends Plant Sci, 15: 651–655.

    Article  PubMed  CAS  Google Scholar 

  • Monier A, Pagarete A, de Vargas C, Allen M J, Read B, Claverie J M, and Ogata H. 2009. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus. Genome Res, 19: 1441–1449.

    Article  PubMed  CAS  Google Scholar 

  • Nissimov J I, Worthy C A, Rooks P, Napier J A, Kimmance S A, Henn M R, Ogata H, and Allen M J. 2011. Draft genome sequence of the coccolithovirus EhV-84. Stand Genomic Sci, 5: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Nissimov J I, Worthy C A, Rooks P, Napier J A, Kimmance S A, Henn M R, Ogata H, and Allen M J. 2011. Draft genome sequence of the Coccolithovirus Emiliania huxleyi virus 203. J Virol, 85: 13468–13469.

    Article  PubMed  CAS  Google Scholar 

  • Nissimov J I, Worthy C A, Rooks P, Napier J A, Kimmance S A, Henn M R, Ogata H, and Allen M J. 2012. Draft genome sequence of the coccolithovirus Emiliania huxleyi virus 202. J Virol, 86: 2380–2381.

    Article  PubMed  CAS  Google Scholar 

  • Nissimov J I, Worthy C A, Rooks P, Napier J A, Kimmance S A, Henn M R, Ogata H, and Allen M J. 2012. Draft genome sequence of four coccolithoviruses: Emiliania huxleyi virus EhV-88, EhV-201, EhV-207, and EhV-208. J Virol, 86: 2896–2897.

    Article  PubMed  CAS  Google Scholar 

  • Pagarete A, Allen M J, Wilson W H, Kimmance S A, and de Vargas C. 2009. Host-virus shift of the sphingolipid pathway along an Emiliania huxleyi bloom: survival of the fattest. Environ Microbiol, 11: 2840–2848.

    Article  PubMed  CAS  Google Scholar 

  • Pagarete A, Le Corguille G, Tiwari B, Ogata H, de Vargas C, Wilson W H, and Allen M J. 2011. Unveiling the transcriptional features associated with coccolithovirus infection of natural Emiliania huxleyi blooms. FEMS Microbiol Ecol, 78: 555–564.

    Article  PubMed  CAS  Google Scholar 

  • Pagarete A, Lanzen A, Puntervoll P, Sandaa R A, Larsen A, Larsen J B, Allen M J, and Bratbak G. 2012. Genomic Sequence and Analysis of EhV-99B1, a New Coccolithovirus from the Norwegian Fjords. Intervirology.

    Google Scholar 

  • Rowe J M, Fabre M F, Gobena D, Wilson W H, and Wilhelm S W. 2011. Application of the major capsid protein as a marker of the phylogenetic diversity of Emiliania huxleyi viruses. FEMS Microbiol Ecol, 76: 373–380.

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, and Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Schroeder D C, Oke J, Hall M, Malin G, and Wilson W H. 2003. Virus succession observed during an Emiliania huxleyi bloom. Appl Environ Microbiol, 69: 2484–2490.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder D C, Biggi G F, Hall M, Davy J, Martínez J M, Richardson A J, Malin G, and Wilson W H. 2005. A GENETIC MARKER TO SEPARATE EMILIANIA HUXLEYI (PRYMNESIOPHYCEAE) MORPHOTYPES1. Journal of Phycology, 41: 874–879.

    Article  CAS  Google Scholar 

  • Suttle C A. 2005. Viruses in the sea. Nature, 437: 356–361.

    Article  PubMed  CAS  Google Scholar 

  • Suttle C A. 2007. Marine viruses—major players in the global ecosystem. Nat Rev Microbiol, 5: 801–812.

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, and Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol, 24: 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  • van Rijssel M, and Gieskes W W C. 2002. Temperature, light, and the dimethylsulfoniopropionate (DMSP) content of Emiliania huxleyi (Prymnesiophyceae). Journal of Sea Research, 48: 17–27.

    Article  Google Scholar 

  • Vardi A, Van Mooy B A, Fredricks H F, Popendorf K J, Ossolinski J E, Haramaty L, and Bidle K D. 2009. Viral glycosphingolipids induce lytic infection and cell death in marine phytoplankton. Science, 326: 861–865.

    Article  PubMed  CAS  Google Scholar 

  • Vardi A, Haramaty L, Van Mooy B A, Fredricks H F, Kimmance S A, Larsen A, and Bidle K D. 2012. Host-virus dynamics and subcellular controls of cell fate in a natural coccolithophore population. Proc Natl Acad Sci U S A.

    Google Scholar 

  • Wilson W H, Tarran G, and Zubkov M V. 2002. Virus dynamics in a coccolithophore-dominated bloom in the North Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 49: 2951–2963.

    Article  Google Scholar 

  • Wilson W H, Schroeder D C, Allen M J, Holden M T, Parkhill J, Barrell B G, Churcher C, Hamlin N, Mungall K, Norbertczak H, Quail M A, Price C, Rabbinowitsch E, Walker D, Craigon M, Roy D, and Ghazal P. 2005. Complete genome sequence and lytic phase transcription profile of a Coccolithovirus. Science, 309: 1090–1092.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Allen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nissimov, J.I., Jones, M., Napier, J.A. et al. Functional inferences of environmental coccolithovirus biodiversity. Virol. Sin. 28, 291–302 (2013). https://doi.org/10.1007/s12250-013-3362-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-013-3362-1

Keywords

Navigation