Skip to main content
Log in

The miRNAs of Herpes Simplex Virus (HSV)

  • Minireview
  • Published:
Virologica Sinica

Abstract

Herpes simplex virus (HSV) is a group of common human pathogens with two serotypes HSV-1 and HSV-2. The prevalence of HSV is worldwide. It primarily infects humans through epithelial cells, when it introduces a latent infection into the nervous system. During viral latency, only a region known as the latency-associated transcript (LAT) is expressed. The discovery of HSV miRNAs helps to draw a larger picture of the infection and pathogenesis of the virus. This review summarizes miRNAs found in HSV-1 and HSV-2 so far. The functional studies of miRNAs in HSV to date indicate that they play a stage-specific role coordinated with viral proteins to maintain the virus life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartel D P. 2004. Micrornas: Genomics, biogenesis, mechanism, and function. Cell, 116(2): 281–297.

    Article  PubMed  CAS  Google Scholar 

  2. Bunzli D, Wietlisbach V, Barazzoni F, et al. 2004. Seroepidemiology of herpes simplex virus type 1 and 2 in western and southern switzerland in adults aged 25–74 in 1992–93: A population-based study. BMC Infect Dis, 4: 10.

    Article  PubMed  Google Scholar 

  3. Cai W, Schaffer P A. 1992. Herpes simplex virus type 1 icp0 regulates expression of immediate-early, early, and late genes in productively infected cells. J Virol, 66(5): 2904–2915.

    PubMed  CAS  Google Scholar 

  4. Cai W, Astor T L, Liptak L M, et al. 1993. The herpes simplex virus type 1 regulatory protein icp0 enhances virus replication during acute infection and reactivation from latency. J Virol, 67(12): 7501–7512.

    PubMed  CAS  Google Scholar 

  5. Cho W C. 2007. Oncomirs: The discovery and progress of micrornas in cancers. Mol Cancer, 6: 60.

    Article  PubMed  Google Scholar 

  6. Chou J, Roizman B. 1986. The terminal a sequence of the herpes simplex virus genome contains the promoter of a gene located in the repeat sequences of the l component. J Virol, 57(2): 629–637.

    PubMed  CAS  Google Scholar 

  7. Cui C, Griffiths A, Li G, et al. 2006. Prediction and identification of herpes simplex virus 1-encoded micrornas. J Virol, 80(11): 5499–5508.

    Article  PubMed  CAS  Google Scholar 

  8. Duan F, Liao J, Huang Q, et al. 2012. Hsv-1 mir-h6 inhibits hsv-1 replication and il-6 expression in human corneal epithelial cells in vitro. Clin Dev Immunol, doi:10.1155/2012/192791

  9. Everett R D. 1987. A detailed mutational analysis of vmw110, a trans-acting transcriptional activator encoded by herpes simplex virus type 1. EMBO J, 6(7): 2069–2076.

    PubMed  CAS  Google Scholar 

  10. Everett R D. 2000. Icp0, a regulator of herpes simplex virus during lytic and latent infection. Bioessays, 22(8): 761–770.

    Article  PubMed  CAS  Google Scholar 

  11. Goujon M, McWilliam H, Li W, et al. 2010. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res, 38Suppl: W695–W699.

    Article  PubMed  CAS  Google Scholar 

  12. Honess R W, Roizman B. 1974. Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol, 14(1): 8–19.

    PubMed  CAS  Google Scholar 

  13. Hukkanen V, Paavilainen H, Mattila R K. 2010. Host responses to herpes simplex virus and herpes simplex virus vectors. Future Virol, 5(4): 493–512.

    Article  CAS  Google Scholar 

  14. Javier R T, Stevens J G, Dissette V B, et al. 1988. A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent state. Virology, 166(1): 254–257.

    Article  PubMed  CAS  Google Scholar 

  15. Jawa R S, Anillo S, Huntoon K, et al. 2011. Analytic review: Interleukin-6 in surgery, trauma, and critical care: Part i: Basic science. J Intensive Care Med, 26(1): 3–12.

    Article  PubMed  Google Scholar 

  16. Jurak I, Kramer M F, Mellor J C, et al. 2010. Numerous conserved and divergent micrornas expressed by herpes simplex viruses 1 and 2. J Virol, 84(9): 4659–4672.

    Article  PubMed  CAS  Google Scholar 

  17. Kramer M F, Jurak I, Pesola J M, et al. 2011. Herpes simplex virus 1 micrornas expressed abundantly during latent infection are not essential for latency in mouse trigeminal ganglia. Virology, 417(2): 239–247.

    Article  PubMed  CAS  Google Scholar 

  18. Lagunoff M, Roizman B. 1995. The regulation of synthesis and properties of the protein product of open reading frame p of the herpes simplex virus 1 genome. J Virol, 69(6): 3615–3623.

    PubMed  CAS  Google Scholar 

  19. Larkin M A, Blackshields G, Brown N P, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23(21): 2947–2948.

    Article  PubMed  CAS  Google Scholar 

  20. Lin Z, Flemington E K. 2011. Mirnas in the pathogenesis of oncogenic human viruses. Cancer Lett, 305(2): 186–199.

    Article  PubMed  CAS  Google Scholar 

  21. Lu L F, Liston A. 2009. Microrna in the immune system, microrna as an immune system. Immunology, 127(3): 291–298.

    Article  PubMed  CAS  Google Scholar 

  22. Mador N, Goldenberg D, Cohen O, et al. 1998. Herpes simplex virus type 1 latency-associated transcripts suppress viral replication and reduce immediate-early gene mrna levels in a neuronal cell line. J Virol, 72(6): 5067–5075.

    PubMed  CAS  Google Scholar 

  23. Manni I, Artuso S, Careccia S, et al. 2009. The microrna mir-92 increases proliferation of myeloid cells and by targeting p63 modulates the abundance of its isoforms. FASEB J, 23(11): 3957–3966.

    Article  PubMed  CAS  Google Scholar 

  24. Mavromara-Nazos P, Silver S, Hubenthal-Voss J, et al. 1986. Regulation of herpes simplex virus 1 genes: Alpha gene sequence requirements for transient induction of indicator genes regulated by beta or late (gamma 2) promoters. Virology, 149(2): 152–164.

    Article  PubMed  CAS  Google Scholar 

  25. Munson D J, Burch A D. 2012. A novel mirna produced during lytic hsv-1 infection is important for efficient replication in tissue culture. Arch Virol, 157(9):1677–1688.

    Article  PubMed  CAS  Google Scholar 

  26. Nakahara K, Carthew R W. 2004. Expanding roles for mirnas and sirnas in cell regulation. Curr Opin Cell Biol, 16(2): 127–133.

    Article  PubMed  CAS  Google Scholar 

  27. Nicoll M P, Proenca J T, Efstathiou S. 2012. The molecular basis of herpes simplex virus latency. FEMS Microbiol Rev, 36(3): 684–705.

    Article  PubMed  CAS  Google Scholar 

  28. Paludan S R. 2001. Requirements for the induction of interleukin-6 by herpes simplex virus-infected leukocytes. J Virol, 75(17): 8008–8015.

    Article  PubMed  CAS  Google Scholar 

  29. Pellett P E, Roizman B. 2007. The family herpesviridae: A brief introduction. In: Fields’ Virology, 5th Ed. Philadelphia: Lippincott Williams & Wilkins. Knipe D M, Howley P M, Griffin D E, et al. ed. pp2479–2499.

    Google Scholar 

  30. Randall G, Lagunoff M, Roizman B. 1997. The product of orf o located within the domain of herpes simplex virus 1 genome transcribed during latent infection binds to and inhibits in vitro binding of infected cell protein 4 to its cognate DNA site. Proc Natl Acad Sci U S A, 94(19): 10379–10384.

    Article  PubMed  CAS  Google Scholar 

  31. Randall G, Lagunoff M, Roizman B. 2000. Herpes simplex virus 1 open reading frames o and p are not necessary for establishment of latent infection in mice. J Virol, 74(19): 9019–9027.

    Article  PubMed  CAS  Google Scholar 

  32. Roizman B, Knipe D M, Whitley R J. 2007. Herpes simplex viruses, In: Fields virology, 5th ed. Knipe D M, Howley P, Griffin D E, et al, ed. Philadelphia: Lippincott Williams & Wilkins, pp2501–2601.

    Google Scholar 

  33. Sawtell N M, Poon D K, Tansky C S, et al. 1998. The latent herpes simplex virus type 1 genome copy number in individual neurons is virus strain specific and correlates with reactivation. J Virol, 72(7): 5343–5350.

    PubMed  CAS  Google Scholar 

  34. Steiner I, Spivack J G, Lirette R P, et al. 1989. Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. EMBO J, 8(2): 505–511.

    PubMed  CAS  Google Scholar 

  35. Stern-Ginossar N, Elefant N, Zimmermann A, et al. 2007. Host immune system gene targeting by a viral mirna. Science, 317(5836): 376–381.

    Article  PubMed  CAS  Google Scholar 

  36. Stevens J G, Wagner E K, Devi-Rao G B, et al. 1987. Rna complementary to a herpesvirus alpha gene mrna is prominent in latently infected neurons. Science, 235(4792): 1056–1059.

    Article  PubMed  CAS  Google Scholar 

  37. Tang S, Patel A, Krause P R. 2009. Novel less-abundant viral micrornas encoded by herpes simplex virus 2 latency-associated transcript and their roles in regulating icp34.5 and icp0 mrnas. J Virol, 83(3): 1433–1442.

    Article  PubMed  CAS  Google Scholar 

  38. Tang S, Bertke A S, Patel A, et al. 2011. Herpes simplex virus 2 microrna mir-h6 is a novel latency-associated transcript-associated microrna, but reduction of its expression does not influence the establishment of viral latency or the recurrence phenotype. J Virol, 85(9): 4501–4509.

    Article  PubMed  CAS  Google Scholar 

  39. Tang S, Bertke A S, Patel A, et al. 2008. An acutely and latently expressed herpes simplex virus 2 viral microrna inhibits expression of icp34.5, a viral neurovirulence factor. Proc Natl Acad Sci U S A, 105(31): 10931–10936.

    Article  PubMed  CAS  Google Scholar 

  40. Toma H S, Murina A T, Areaux R G, et al. 2008. Ocular hsv-1 latency, reactivation and recurrent disease. Semin Ophthalmol, 23(4): 249–273.

    Article  PubMed  Google Scholar 

  41. Umbach J L, Nagel M A, Cohrs R J, et al. 2009. Analysis of human alphaherpesvirus microrna expression in latently infected human trigeminal ganglia. J Virol, 83(20): 10677–10683.

    Article  PubMed  CAS  Google Scholar 

  42. Umbach J L, Kramer M F, Jurak I, et al. 2008. Micrornas expressed by herpes simplex virus 1 during latent infection regulate viral mrnas. Nature, 454(7205): 780–783.

    PubMed  CAS  Google Scholar 

  43. Umbach J L, Wang K, Tang S, et al. 2010. Identification of viral micrornas expressed in human sacral ganglia latently infected with herpes simplex virus 2. J Virol, 84(2): 1189–1192.

    Article  PubMed  CAS  Google Scholar 

  44. Veksler-Lublinsky I, Shemer-Avni Y, Kedem K, et al. 2010. Gene bi-targeting by viral and human mirnas. BMC Bioinformatics, 11: 249.

    Article  PubMed  Google Scholar 

  45. Vyse A J, Gay N J, Slomka M J, et al. 2000. The burden of infection with hsv-1 and hsv-2 in england and wales: Implications for the changing epidemiology of genital herpes. Sex Transm Infect, 76(3): 183–187.

    Article  PubMed  CAS  Google Scholar 

  46. Wagner E K, Devi-Rao G, Feldman L T, et al. 1988. Physical characterization of the herpes simplex virus latency-associated transcript in neurons. J Virol, 62(4): 1194–1202.

    PubMed  CAS  Google Scholar 

  47. Wald A, Corey L. 2007. Persistence in the population: Epidemiology, transmission. In: Human herpesviruses: Biology, therapy, and immunoprophylaxis. Arvin A, Campadelli-Fiume G, Mocarski E, et al., ed. Cambridge: Cambridge University Press, p656–672.

    Google Scholar 

  48. Wang Y, Lee C G. 2009. Microrna and cancer—focus on apoptosis. J Cell Mol Med, 13(1): 12–23.

    Article  PubMed  Google Scholar 

  49. Wienholds E, Koudijs M J, Van Eeden F J, et al. 2003. The microrna-producing enzyme dicer1 is essential for zebrafish development. Nat Genet, 35(3): 217–218.

    Article  PubMed  CAS  Google Scholar 

  50. Xu F, Schillinger J A, Sternberg M R, et al. 2002. Seroprevalence and coinfection with herpes simplex virus type 1 and type 2 in the united states, 1988–1994. J Infect Dis, 185(8): 1019–1024.

    Article  PubMed  Google Scholar 

  51. Xu F, Sternberg M R, Kottiri B J, et al. 2006. Trends in herpes simplex virus type 1 and type 2 seroprevalence in the united states. JAMA, 296(8): 964–973.

    Article  PubMed  CAS  Google Scholar 

  52. Zabolotny J M, Krummenacher C, Fraser N W. 1997. The herpes simplex virus type 1 2.0-kilobase latency-associated transcript is a stable intron which branches at a guanosine. J Virol, 71(6): 4199–4208.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Sun.

Additional information

Foundation items: This work was supported by the National Natural Sciences Foundation of China (No. 30670094 and 30700028) and Youth Science Research Foundation of PUMC (No. 2012X23).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, L., Li, Q. The miRNAs of Herpes Simplex Virus (HSV). Virol. Sin. 27, 332–337 (2012). https://doi.org/10.1007/s12250-012-3266-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-012-3266-5

Keywords

Navigation