Skip to main content

Advertisement

Log in

The protamine-like DNA-binding protein P6.9 epigenetically up-regulates Autographa californica multiple nucleopolyhedrovirus gene transcription in the late infection phase

Virologica Sinica

Abstract

Protamines are a group of highly basic proteins first discovered in spermatozoon that allow for denser packaging of DNA than histones and will result in down-regulation of gene transcription[1]. It is well recognized that the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) encodes P6.9, a protamine-like protein that forms the viral subnucleosome through binding to the viral genome[29]. Previous research demonstrates that P6.9 is essential for viral nucleocapsid assembly, while it has no influence on viral genome replication[31]. In the present study, the role of P6.9 in viral gene transcription regulation is characterized. In contrast to protamines or other protamine-like proteins that usually down-regulate gene transcription, P6.9 appears to up-regulate viral gene transcription at 12–24 hours post infection (hpi), whereas it is non-essential for the basal level of viral gene transcription. Fluorescence microscopy reveals the P6.9’s co-localization with DNA is temporally and spatially synchronized with P6.9’s impact on viral gene transcription, indicating the P6.9-DNA association contributes to transcription regulation. Chromatin fractionation assay further reveals an unexpected co-existence of P6.9 and host RNA polymerase II in the same transcriptionally active chromatin fraction at 24 hpi, which may probably contribute to viral gene transcription up-regulation in the late infection phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Balhorn R. 2007. The protamine family of sperm nuclear proteins. Genome biol, 8(9): 227.

    Article  PubMed  Google Scholar 

  2. Dai W T, Deng F, Wang H L, et al. 2006. The transcription profiles of nine HaSNPV genes. Virol Sin, 21(1): 47–51.

    CAS  Google Scholar 

  3. Eirin-Lopez J M, Frehlick L J, Ausio J. 2006. Protamines, in the footsteps of linker histone evolution. J Biol Chem, 281(1): 1–4.

    Article  PubMed  CAS  Google Scholar 

  4. Fareed G C, Davoli D. 1977. Molecular biology of papovaviruses. Annu Rev Biochem, 46: 471–522.

    Article  PubMed  CAS  Google Scholar 

  5. Flint J, Shenk T. 1997. Viral transactivating proteins. Annu rev genet, 31: 177–212.

    Article  PubMed  CAS  Google Scholar 

  6. Guarino L A, Summers M D. 1986. Interspersed homologous DNA of autographa californica nuclear polyhedrosis virus enhances delayed-early gene expression. J Virol, 60(1): 215–223.

    PubMed  CAS  Google Scholar 

  7. Guarino L A, Gonzalez M A, Summers M D. 1986. Complete sequence and enhancer function of the homologous DNA regions of autographa californica nuclear polyhedrosis virus. J Virol, 60(1): 224–229.

    PubMed  CAS  Google Scholar 

  8. Guarino L A, Xu B, Jin J, et al. 1998. A virus-encoded rna polymerase purified from baculovirus-infected cells. J Virol, 72(10): 7985–7991.

    PubMed  CAS  Google Scholar 

  9. Jiang S S, Chang I S, Huang L W, et al. 2006. Temporal transcription program of recombinant autographa californica multiple nucleopolyhedrosis virus. J Virol, 80(18): 8989–8999.

    Article  PubMed  CAS  Google Scholar 

  10. Johnson J S, Osheim Y N, Xue Y, et al. 2004. Adenovirus protein vii condenses DNA, represses transcription, and associates with transcriptional activator E1A. J Virol, 78(12): 6459–6468.

    Article  PubMed  CAS  Google Scholar 

  11. Kanda T, Sullivan K F, Wahl G M. 1998. Histone-gfp fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol, 8(7): 377–385.

    Article  PubMed  CAS  Google Scholar 

  12. Knebel D, Lubbert H, Doerfler W. 1985. The promoter of the late p10 gene in the insect nuclear polyhedrosis virus autographa californica: Activation by viral gene products and sensitivity to DNA methylation. The EMBO journal, 4(5): 1301–1306.

    PubMed  CAS  Google Scholar 

  13. Kovacs G R, Guarino L A, Summers M D. 1991. Novel regulatory properties of the ie1 and ie0 transactivators encoded by the baculovirus autographa californica multicapsid nuclear polyhedrosis virus. J Virol, 65(10): 5281–5288.

    PubMed  CAS  Google Scholar 

  14. Krappa R, Knebel-Morsdorf D. 1991. Identification of the very early transcribed baculovirus gene pe-38. J Virol, 65(2): 805–812.

    PubMed  CAS  Google Scholar 

  15. Krappa R, Roncarati R, Knebel-Morsdorf D. 1995. Expression of pe38 and ie2, viral members of the c3hc4 finger family, during baculovirus infection: Pe38 and ie2 localize to distinct nuclear regions. J Virol, 69(9): 5287–5293.

    PubMed  CAS  Google Scholar 

  16. Krappa R, Behn-Krappa A, Jahnel F, et al. 1992. Differential factor binding at the promoter of early baculovirus gene pe38 during viral infection: Gata motif is recognized by an insect protein. J Virol, 66(6): 3494–3503.

    PubMed  CAS  Google Scholar 

  17. Kurg R, Sild K, Ilves A, et al. 2005. Association of bovine papillomavirus e2 protein with nuclear structures in vivo. J Virol, 79(16): 10528–10539.

    Article  PubMed  CAS  Google Scholar 

  18. Lewis J D, Song Y, de Jong M E, et al. 2003. A walk though vertebrate and invertebrate protamines. Chromosoma, 111(8): 473–482.

    Article  PubMed  Google Scholar 

  19. Lieberman P M. 2006. Chromatin regulation of virus infection. Trends Microbiol, 14(3): 132–140.

    Article  PubMed  CAS  Google Scholar 

  20. Luckow V A, Lee S C, Barry G F, et al. 1993. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in escherichia coli. J Virol, 67(8): 4566–4579.

    PubMed  CAS  Google Scholar 

  21. Luger K, Mader A W, Richmond R K, et al. 1997. Crystal structure of the nucleosome core particle at 2.8 a resolution. Nature, 389(6648): 251–260.

    CAS  Google Scholar 

  22. Morris T D, Miller L K. 1994. Mutational analysis of a baculovirus major late promoter. Gene, 140(2): 147–153.

    Article  PubMed  CAS  Google Scholar 

  23. Nagamine T, Kawasaki Y, Abe A, et al. 2008. Nuclear marginalization of host cell chromatin associated with expansion of two discrete virus-induced subnuclear compartments during baculovirus infection. J Virol, 82(13): 6409–6418.

    Article  PubMed  CAS  Google Scholar 

  24. Olins D E, Olins A L. 2003. Chromatin history: Our view from the bridge. Nat Rev Mol Cell Biol, 4(10): 809–814.

    PubMed  CAS  Google Scholar 

  25. Peng Y, Song J, Lu J, et al. 2007. The histone deacetylase inhibitor sodium butyrate inhibits baculovirus-mediated transgene expression in sf9 cells. J Biotechnol, 131(2): 180–187.

    Article  PubMed  CAS  Google Scholar 

  26. Rose S M, Garrard W T. 1984. Differentiation-dependent chromatin alterations precede and accompany transcription of immunoglobulin light chain genes. J Biol Chem, 259(13): 8534–8544.

    PubMed  CAS  Google Scholar 

  27. Strahl B D, Allis C D. 2000. The language of covalent histone modifications. Nature, 403(6765): 41–45.

    Article  PubMed  CAS  Google Scholar 

  28. Sung M T, Cao T M, Coleman R T, et al. 1983. Gene and protein sequences of adenovirus protein vii, a hybrid basic chromosomal protein. Proc Natl Acad Sci U S A, 80(10): 2902–2906.

    Article  PubMed  CAS  Google Scholar 

  29. Tweeten K A, Bulla L A, Consigli R A. 1980. Characterization of an extremely basic protein derived from granulosis virus nucleocapsids. J Virol, 33(2): 866–876.

    PubMed  CAS  Google Scholar 

  30. Vanarsdall A L, Okano K, Rohrmann G F. 2006. Characterization of the role of very late expression factor 1 in baculovirus capsid structure and DNA processing. J Virol, 80(4): 1724–1733.

    Article  PubMed  CAS  Google Scholar 

  31. Wang M, Tuladhar E, Shen S, et al. 2010. Specificity of baculovirus p6.9 basic DNA-binding proteins and critical role of the c terminus in virion formation. J Virol, 84(17): 8821–8828.

    CAS  Google Scholar 

  32. Wang Y, Wang Q, Liang C, et al. 2008. Autographa californica multiple nucleopolyhedrovirus nucleocapsid protein bv/odv-c42 mediates the nuclear entry of p78/83. J Virol, 82(9): 4554–4561.

    Article  PubMed  CAS  Google Scholar 

  33. Wilson M E, Miller L K. 1986. Changes in the nucleoprotein complexes of a baculovirus DNA during infection. Virology, 151(2): 315–328.

    Article  PubMed  CAS  Google Scholar 

  34. Wilson M E, Price K H. 1988. Association of autographa californica nuclear polyhedrosis virus (acmnpv) with the nuclear matrix. Virology, 167 (1): 233–241.

    Article  Google Scholar 

  35. Workman J L. 2006. Nucleosome displacement in transcription. Genes Dev, 20(15): 2009–2017.

    Article  PubMed  CAS  Google Scholar 

  36. Wykes S M, Krawetz S A. 2003. The structural organization of sperm chromatin. J Biol Chem, 278(32): 29471–29477.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Wang.

Additional information

Foundation items: the National Nature Science Foundations of China (31030027, 30400271) and the National Natural Science Foundations of China for Young Scholars (31000081).

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Y., Li, K., Pei, Rj. et al. The protamine-like DNA-binding protein P6.9 epigenetically up-regulates Autographa californica multiple nucleopolyhedrovirus gene transcription in the late infection phase. Virol. Sin. 27, 57–68 (2012). https://doi.org/10.1007/s12250-012-3229-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-012-3229-x

Key words

Navigation