Skip to main content
Log in

Structural characteristics and molecular mechanism of hepatitis B virus reverse transcriptase

  • Published:
Virologica Sinica

Abstract

Hepatitis B virus (HBV), a typical member of the Hepadnaviridae family, is responsible for infections that cause B-type hepatitis which leads to severe public health problems around the world. The small enveloped DNA-containing virus replicates via reverse transcription, and this unique process is accomplished by the virally encoded reverse transcriptase (RT). This multi-functional protein plays a vital role in the viral life cycle. Here, we provide a summary of current knowledge regarding the structural characteristics and molecular mechanisms of HBV RT. Improved understanding of these processes is of both theoretical and practical significance for fundamental studies of HBV and drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartenschlager R, Schaller H. 1992. Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome. EMBO J, 11(9): 3413–3420.

    CAS  PubMed  Google Scholar 

  2. Beck J, Nassal M. 1997. Sequence- and structure-specific determinants in the interaction between the RNA encapsidation signal and reverse transcriptase of avian hepatitis B viruses. J Virol, 71(7): 4971–4980.

    CAS  PubMed  Google Scholar 

  3. Beck J, Nassal M. 1998. Formation of a functional hepatitis B virus replication initiation complex involves a major structural alteration in the RNA template. Mol Cell Biol, 18(11): 6265–6272.

    CAS  PubMed  Google Scholar 

  4. Beck J, Nassal M. 2003. Efficient Hsp90-independent in vitro activation by Hsc70 and Hsp40 of duck Hepatitis B virus reverse transcriptase, an assumed Hsp90 client protein. J Biol Chem, 278(38): 36128–36138.

    Article  CAS  PubMed  Google Scholar 

  5. Beck J, Nassal M. 2007. Hepatitis B virus replication. World J Gastroenterol, 13(1): 48–64.

    CAS  PubMed  Google Scholar 

  6. Beck J, Vogel M, Nassal M. 2002. dNTP versus NTP discrimination by phenylalanine 451 in duck hepatitis B virus P protein indicates a common structure of the dNTP-binding pocket with other reverse transcriptases. Nucl Acids Res, 30(7): 1679–1687.

    Article  CAS  PubMed  Google Scholar 

  7. Chen Y, Marion P L. 1996. Amino acids essential for RNase H activity of hepadnaviruses are also required for efficient elongation of minus-strand viral DNA. J Virol, 70(9): 6151–6156.

    CAS  PubMed  Google Scholar 

  8. Chen Y, Robinson W S, Marion P L. 1994. Selected mutations of the duck hepatitis B virus P gene RNase H domain affect both RNA packaging and priming of minusstrand DNA synthesis. J Virol, 68(8): 5232–5238.

    CAS  PubMed  Google Scholar 

  9. Feng H, Hu K. 2008. Aptamers against viral hepatitis: from rational design to practical application. Virol Sin, 23(5): 315–320.

    Article  CAS  Google Scholar 

  10. Gao W, Hu J. 2007. Formation of Hepatitis B Virus Covalently Closed Circular DNA: Removal of Genome- Linked Protein. J Virol, 81(12): 6164–6174.

    Article  CAS  PubMed  Google Scholar 

  11. Girard F C, Ottink O M, Ampt K A. et al. 2007. Thermodynamics and NMR studies on Duck, Heron and Human HBV encapsidation signals. Nucl Acids Res, 35(8): 2800–2811.

    Article  CAS  PubMed  Google Scholar 

  12. Habig J W, Loeb D D. 2006. Sequence identity of the direct repeats, DR1 and DR2, contributes to the discrimination between primer translocation and in situ priming during replication of the duck hepatitis B virus. J Mol Biol, 364(1): 32–43.

    Article  CAS  PubMed  Google Scholar 

  13. Haines K M, Loeb D D. 2007. The sequence of the RNA primer and the DNA template influence the initiation of plus-strand DNA synthesis in hepatitis B virus. J Mol Biol, 370(3): 471–480.

    Article  CAS  PubMed  Google Scholar 

  14. Hu J, Boyer M. 2006. Hepatitis B virus reverse transcriptase and ε RNA sequences required for specific interaction in vitro. J Virol, 80(5): 2141–2150.

    Article  CAS  PubMed  Google Scholar 

  15. Hu J, Flores D, Toft D, et al. 2004. Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function. J Virol, 78(23): 13122–13131.

    Article  CAS  PubMed  Google Scholar 

  16. Hu J, Lin L. 2009. RNA-protein interactions in hepadnavirus reverse transcription. Front Biosci, 14: 1606–1618.

    Article  CAS  PubMed  Google Scholar 

  17. Hu J, Nguyen D. 2004. Therapy for chronic hepatitis B: the earlier, the better? Trends Microbiol, 12(10): 431–433.

    Article  CAS  PubMed  Google Scholar 

  18. Hu J, Seeger C. 1996. Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase. Proc Natl Acad Sci USA, 93(3): 1060–1064.

    Article  CAS  PubMed  Google Scholar 

  19. Hu J, Toft D, Anselmo D, et al. 2002. In vitro reconstitution of functional Hepadnavirus reverse transcriptase with cellular chaperone proteins. J Virol, 76(1): 269–279.

    Article  CAS  PubMed  Google Scholar 

  20. Hu J, Toft D, Seeger C. 1997. Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids. EMBO J, 16(1): 59–68.

    Article  PubMed  Google Scholar 

  21. Hu K, Beck J, Nassal M. 2004. SELEX-derived aptamers of the duck hepatitis B virus RNA encapsidation signal distinguish critical and non-critical residues for productive initiation of rever transcription. Nucl Acids Res, 32(14): 4377–4389.

    Article  CAS  PubMed  Google Scholar 

  22. Huang H, Chopra R, Verdine G L, et al. 1998. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science, 282(5394): 1669–1675.

    Article  CAS  PubMed  Google Scholar 

  23. Joyce C M. 1997. Choosing the right sugar: how polymerases select a nucleotide substrate. Proc Natl Acad Sci USA, 94(5): 1619–1622.

    Article  CAS  PubMed  Google Scholar 

  24. Kim H Y, Kim H Y, Jung J, et al. 2008. Incorporation of deoxyribonucleotides and ribonucleotides by a dNTP-binding cleft mutated reverse transcriptase in hepatitis B virus core particles. Virology, 370(1): 205–212.

    Article  CAS  PubMed  Google Scholar 

  25. Lanford R E, Notvall L, Lee H, et al. 1997. Transcomplementation of nucleotide priming and reverse transcription between independently expressed TP and RT domains of the hepatitis B virus reverse transcriptase. J Virol, 71: 2996–3004.

    CAS  PubMed  Google Scholar 

  26. Lin L, Hu J. 2008. Inhibition of hepadnavirus reverse transcriptase-epsilon RNA interaction by porphyrin compounds. J Virol, 82(5): 2305–2312.

    Article  CAS  PubMed  Google Scholar 

  27. Lin X, Ma Z M, Yao X, et al. 2005. Substitution of proline 306 in the reverse transcriptase domain of hepatitis B virus regulates replication. J Gen Virol, 86(1): 85–90.

    Article  CAS  PubMed  Google Scholar 

  28. Lin X, Yuan Z H, Wu L, et al. 2001. A single amino acid in the reverse transcriptase domain of hepatitis B virus affects virus replication efficiency. J Virol, 75(23): 11827–11833.

    Article  CAS  PubMed  Google Scholar 

  29. Liu N, Ji L, Maguire M L, et al. 2004. cis-Acting sequences that contribute to the synthesis of relaxedcircular DNA of human hepatitis B virus. J Virol, 78(2): 642–649.

    Article  CAS  PubMed  Google Scholar 

  30. Nassal M. 2008. Hepatitis B viruses: Reverse transcription a different way. Virus Research, 134(1–2): 235–249.

    Article  CAS  PubMed  Google Scholar 

  31. Nassal M, Rieger A. 1996. A bulged region of the hepatitis B virus RNA encapsidation signal contains the replication origin for discontinuous firststrand DNA synthesis. J Virol, 70(5): 2764–2773.

    CAS  PubMed  Google Scholar 

  32. Nassal M, Schaller H. 1994. Hepatitis B virus replication. Trends Microbiol, 1(6): 221–228.

    Article  Google Scholar 

  33. Ono S K, Kato N, Shiratori Y, et al. 2001. The polymerase L528M mutation cooperates with nucleotide binding-site mutations, increasing hepatitis B virus replication and drug resistance. J Clin Invest, 107(4): 449–455.

    Article  CAS  PubMed  Google Scholar 

  34. Potenza N, Salvatore V, Raimondo D, et al. 2007. Optimized expression from a synthetic gene of an untagged RNase H domain of human hepatitis B virus polymerase which is enzymatically active. Protein Expr Purif, 55(1): 93–99.

    Article  CAS  PubMed  Google Scholar 

  35. Radziwill G, Tucker W, Schaller H. 1990. Mutational analysis of the hepatitis B virus P gene product: domain structure and RNase H activity. J Virol, 64(2): 613–620.

    CAS  PubMed  Google Scholar 

  36. Schaaf S G, Beck J, Nassal M. 1999. A small 2′-OH- and base-dependent recognition element downstream of the initiation site in the RNA encapsidation signal is essential for hepatitis B virus replication initiation. J Biol Chem, 274(53): 37787–37794.

    Article  CAS  PubMed  Google Scholar 

  37. Seeger C, Mason W S. 2000. Hepatitis B virus biology. Microbiol Mol Biol Rev, 64(1): 51–68.

    Article  CAS  PubMed  Google Scholar 

  38. Stahl M, Beck J, Nassal M. 2007. Chaperones Activate Hepadnavirus Reverse Transcriptase by Transiently Exposing a C-Proximal Region in the Terminal Protein Domain That Contributes to ε RNA Binding. J Virol, 81(24): 13354–13364.

    Article  CAS  PubMed  Google Scholar 

  39. Stahl M, Retzlaff M, Nassal M, et al. 2007. Chaperone activation of the hepadnaviral reverse transcriptase for template RNA binding is established by the Hsp70 and stimulated by the Hsp90 system. Nucleic Acids Research, 35(18): 6124–6136.

    Article  CAS  PubMed  Google Scholar 

  40. Summers J, Mason W S. 1982. Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate. Cell, 29(2): 403–415.

    Article  CAS  PubMed  Google Scholar 

  41. Van Hemert F J, Zaaijer H L, Berkhout B, et al. 2008. Mosaic amino acid conservation in 3D-structures of surface protein and polymerase of hepatitis B virus. Virology, 370(2): 362–372.

    Article  PubMed  Google Scholar 

  42. Wang G H, Seeger C. 1992. The reverse transcriptase of hepatitis B virus acts as a protein primer for viral DNA synthesis. Cell, 71(4): 663–670.

    Article  CAS  PubMed  Google Scholar 

  43. Wang G H, Seeger C. 1993. Novel mechanism for reverse transcription in hepatitis B viruses. J Virol, 67(11): 6507–6512.

    CAS  PubMed  Google Scholar 

  44. Wang X, Qian X, Guo H C, et al. 2003. Heat shock protein 90-independent activation of truncated Hepadnavirus reverse transcriptase. J Virol, 77(8): 4471–4480.

    Article  CAS  PubMed  Google Scholar 

  45. Ying C, Li Y, Leung C H, et al. 2007. Unique antiviral mechanism discovered in anti-hepatitis B virus research with a natural product analogue. Proc Natl Acad Sci USA, 104(20): 8526–8531.

    Article  CAS  PubMed  Google Scholar 

  46. Zoulim F, Seeger C. 1994. Reverse transcription in hepatitis B viruses is primed by a tyrosine residue of the polymerase. J Virol, 68(1): 6–13.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-hong Hu.

Additional information

Foundation items: National Nature Science Foundations of China (30870131) and Program of Chinese Academy of Sciences (0802021SA1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, H., Hu, Kh. Structural characteristics and molecular mechanism of hepatitis B virus reverse transcriptase. Virol. Sin. 24, 509–517 (2009). https://doi.org/10.1007/s12250-009-3076-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-009-3076-6

CLC number

Key words

Navigation