Skip to main content

Advertisement

Log in

Herpes simplex viruses and induction of interferon responses

  • Published:
Virologica Sinica

Abstract

Herpes simplex viruses (HSV) are human pathogens responsible for a variety of diseases, including localized mucocutaneous lesions, encephalitis, and disseminated diseases. HSV infection leads to rapid induction of innate immune responses. A critical part of this host response is the type I IFN system including the induction of type I IFNs, IFN-mediated signaling and amplification of IFN response. This provides the host with immediate countermeasure during acute infection to limit initial viral replication and to facilitate an appropriate adaptive immune response. However, HSV has devised multiple strategies to evade and interfere with innate immunity. This review will focus on the induction of type I IFN response by HSV during acute infection and current knowledge of mechanisms by which HSV interferes with this induction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexopoulou L, Holt A C, Medzhitov R, et al. 2001. Recognition of double-stranded RNA and activation of NF-[kappa]B by Toll-like receptor 3. Nature, 413(6857): 732.

    PubMed  CAS  Google Scholar 

  2. Ankel H, Westra D F, Welling-Wester S, et al. 1998. Induction of Interferon-[alpha] by Glycoprotein D of Herpes Simplex Virus: A Possible Role of Chemokine Receptors. Virology, 251(2): 317.

    PubMed  CAS  Google Scholar 

  3. Aravalli R, Peterson P, Lokensgard J. 2007. Toll-like Receptors in Defense and Damage of the Central Nervous System. J Neuroimmune Pharmacol, 2(4): 297.

    PubMed  Google Scholar 

  4. Au W, Moore P A, LaFleur D W, et al. 1998. Characterization of the Interferon Regulatory Factor-7 and Its Potential Role in the Transcription Activation of Interferon A Genes. J Biol Chem, 273(44): 29210–29217.

    PubMed  CAS  Google Scholar 

  5. Au W, Moore P A, Lowther W, et al. 1995. Identification of a Member of the Interferon Regulatory Factor Family that Binds to the Interferon-Stimulated Response Element and Activates Expression of Interferon-Induced Genes. Proc Natl Acad Scie USA, 92(25): 11657–11661.

    CAS  Google Scholar 

  6. Bosnjak L, Jones C A, Abendroth A, et al. 2005. Dendritic Cell Biology in Herpesvirus Infections. Viral Immunol, 18(3): 419–433.

    PubMed  CAS  Google Scholar 

  7. Casrouge A, Zhang S Y, Eidenschenk C, et al. 2006. Herpes Simplex Virus Encephalitis in Human UNC-93B Deficiency. Science, 314(5797): 308–312.

    PubMed  CAS  Google Scholar 

  8. Cassady K A, Gross M, Roizman B. 1998. The Second-Site Mutation in the Herpes Simplex Virus Recombinants Lacking the gamma 134.5 Genes Precludes Shutoff of Protein Synthesis by Blocking the Phosphorylation of eIF-2alpha. J Virol, 72(9): 7005–7011.

    PubMed  CAS  Google Scholar 

  9. Cassady K A, Gross M, Roizman B. 1998. The Herpes Simplex Virus Us11 Protein Effectively Compensates for the γ134.5 Gene if Present before Activation of Protein Kinase R by Precluding Its Phosphorylation and That of the alpha subunit of Eukaryotic Translation Initiation Factor 2. J Virol, 72(11): 8620–8626.

    PubMed  CAS  Google Scholar 

  10. Cerveny M, Hessefort S, Yang K, et al. 2003. Amino acid substitutions in the effector domain of the g134.5 protein of herpes simplex virus 1 have differential effects on viral response to interferon-a. Virology, 307(2): 290.

    PubMed  CAS  Google Scholar 

  11. Chee A V, Roizman B. 2004. Herpes Simplex Virus 1 Gene Products Occlude the Interferon Signaling Pathway at Multiple Sites. J Virol, 78(8): 4185–4196.

    PubMed  CAS  Google Scholar 

  12. Cheng G, Brett M E, He B. 2001. Val193 and Phe195 of the γ134.5 Protein of Herpes Simplex Virus 1 Are Required for Viral Resistance to Interferon-α/β. Virology, 290(1): 115

    PubMed  CAS  Google Scholar 

  13. Cheng G, Gross M, Brett M E, et al. 2001. AlaArg Motif in the Carboxyl Terminus of the γ134.5 Protein of Herpes Simplex Virus Type 1 Is Required for the Formation of a High-Molecular-Weight Complex That Dephosphorylates eIF-2a. J Virol, 75(8): 3666–3674.

    PubMed  CAS  Google Scholar 

  14. Cheng G, Yang K, He B. 2003. Dephosphorylation of eIF-2a Mediated by the g134.5 Protein of Herpes Simplex Virus Type 1 Is Required for Viral Response to Interferon but Is Not Sufficient for Efficient Viral Replication. J Virol, 77(18): 10154–10161.

    PubMed  CAS  Google Scholar 

  15. Cheng G, Zhong J, Chung J, et al. 2007. Double-stranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells. Proc Natl Acad Scie USA, 104(21): 9035–9040.

    CAS  Google Scholar 

  16. Collins S E, Noyce R S, Mossman K L. 2004. Innate Cellular Response to Virus Particle Entry Requires IRF3 but Not Virus Replication. J Virol, 78(4): 1706–1717.

    PubMed  CAS  Google Scholar 

  17. Diebold S S, Kaisho T, Hemmi H, et al. 2004. Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA. Science, 303(5663): 1529–1531.

    PubMed  CAS  Google Scholar 

  18. Duerst R J, Morrison L A. 2004. Herpes simplex virus 2 virion host shutoff protein interferes with type I interferon production and responsiveness. Virology, 322(1): 158.

    PubMed  CAS  Google Scholar 

  19. Eidson K M, Hobbs W E, Manning B J, et al. 2002. Expression of Herpes Simplex Virus ICP0 Inhibits the Induction of Interferon-Stimulated Genes by Viral Infection. J Virol, 76(5): 2180–2191.

    PubMed  CAS  Google Scholar 

  20. Elain G, Romero P, Segal D, et al. 2007. TLR3 Deficiency in Patients with Herpes Simplex Encephalitis. Science, 317(5844): 1522–1527.

    PubMed  Google Scholar 

  21. Fitzgerald K A, McWhirter S M, Faia K L, et al. 2003. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol, 4(5): 491.

    PubMed  CAS  Google Scholar 

  22. Garcia-Sastre A, Biron C A. 2006. Type 1 Interferons and the Virus-Host Relationship: A Lesson in Detente. Science, 312(5775):879–882.

    PubMed  CAS  Google Scholar 

  23. Garcia M A, Meurs E F, Esteban M. 2007. The dsRNA protein kinase PKR: Virus and cell control. Biochimie, 89(6–7): 799.

    PubMed  CAS  Google Scholar 

  24. Gitlin L, Barchet W, Gilfillan S, et al. 2006. Essential role of mda-5 in type I IFN responses to polyriboinosinic: polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Scie USA, 103(22): 8459–8464.

    CAS  Google Scholar 

  25. Guo J, Peters K L, Sen G C. 2000. Induction of the Human Protein P56 by Interferon, Double-Stranded RNA, or Virus Infection. Virology, 267(2): 209.

    PubMed  CAS  Google Scholar 

  26. Hacker H, Redecke V, Blagoev B, et al. 2006. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature, 439(7073): 204.

    PubMed  Google Scholar 

  27. He B, Chou J, Brandimarti R, et al. 1997. Suppression of the phenotype of γ134.5 herpes simplex virus 1: failure of activated RNA-dependent protein kinase to shut off protein synthesis is associated with a deletion in the domain of the α 47 gene. J Virol, 71(8): 6049–6054.

    PubMed  CAS  Google Scholar 

  28. He B, Gross M, Roizman B. 1997. The γ134.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1α to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. PNAS, 94(3): 843–848.

    PubMed  CAS  Google Scholar 

  29. Heil F, Hemmi H, Hochrein H, et al. 2004. Species-Specific Recognition of Single-Stranded RNA via Toll-like Receptor 7 and 8. Science, 303(5663): 1526–1529.

    PubMed  CAS  Google Scholar 

  30. Hemmi H, Takeuchi O, Kawai T, et al. 2000. A Toll-like receptor recognizes bacterial DNA. Nature, 408(6813):740.

    PubMed  CAS  Google Scholar 

  31. Herbst-Kralovetz M M, Pyles R B. 2006. Toll-like Receptors, Innate Immunity and HSV Pathogenesis. Herpes, 13(2): 37–41.

    PubMed  CAS  Google Scholar 

  32. Hochrein H, Schlatter B, O’Keeffe M, et al. 2004. Herpes simplex virus type-1 induces IFN-{alpha} production via Toll-like receptor 9-dependent and-independent pathways. Proc Natl Acad Scie USA, 101(31): 11416–11421.

    CAS  Google Scholar 

  33. Hornung V, Ellegast J, Kim S, et al. 2006. 5′-Triphosphate RNA Is the Ligand for RIG-I. Science, 314(5801): 994–997.

    PubMed  Google Scholar 

  34. Ishii K J, Akira S. 2006. Innate immune recognition of, and regulation by, DNA. Trends Immunol, 27(11): 525.

    PubMed  CAS  Google Scholar 

  35. Ishii K J, Coban C, Kato H, et al. 2006. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol, 7(1): 40.

    PubMed  CAS  Google Scholar 

  36. Ishii K J, Kawagoe T, Koyama S, et al. 2008. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature, 451(7179): 725.

    PubMed  CAS  Google Scholar 

  37. Jacquemont B, Roizman B. 1975. RNA synthesis in cells infected with herpes simplex virus. X. Properties of viral symmetric transcripts and of double-stranded RNA prepared from them. J Virol, 15(4): 707–713.

    PubMed  CAS  Google Scholar 

  38. Jiang Z, Mak T W, Sen G, et al. 2004. Toll-like receptor 3-mediated activation of NF-{kappa}B and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-{beta}. Proc Natl Acad Scie USA, 101(10): 3533–3538.

    CAS  Google Scholar 

  39. Johnson K E, Song B, Knipe D M. 2008. Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling. Virology, 374(2): 487.

    PubMed  CAS  Google Scholar 

  40. Kato H, Takeuchi O, Sato S, et al. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature, 441(7089): 101.

    PubMed  CAS  Google Scholar 

  41. Kawai T, Takahashi K, Sato S, et al. 2005. IPS-1, an adaptor triggering RIG-I-and Mda5-mediated type I interferon induction. Nat Immunol, 6(10): 981.

    PubMed  CAS  Google Scholar 

  42. Kawai T, Akira S. 2006. Innate immune recognition of viral infection. Nat Immunol, 7(2): 131.

    PubMed  CAS  Google Scholar 

  43. Kim J C, Lee S Y, Kim S Y, et al. 2008. HSV-1 ICP27 suppresses NF-[kappa]B activity by stabilizing I[kappa]B [alpha]. FEBS Letters, 582(16): 2371.

    PubMed  CAS  Google Scholar 

  44. Konat G W, Kielian T, Marriott I. 2006. The role of Toll-like receptors in CNS response to microbial challenge. J Neurochem, 99(1): 1–12.

    PubMed  CAS  Google Scholar 

  45. Korom M, Wylie K M, Morrison L A. 2008. Selective Ablation of Virion Host Shutoff Protein RNase Activity Attenuates Herpes Simplex Virus 2 in Mice. J Virol, 82(7): 3642–3653.

    PubMed  CAS  Google Scholar 

  46. Krug A, Luker G D, Barchet W, et al. 2004. Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood, 103(4): 1433–1437.

    PubMed  CAS  Google Scholar 

  47. Ku C L, von Bernuth H, Picard C, et al. 2007. Selective predisposition to bacterial infections in IRAK-4 deficient children: IRAK-4 dependent TLRs are otherwise redundant in protective immunity. J Exp Med, 204(10): 2407–2422.

    PubMed  CAS  Google Scholar 

  48. Kumar-Sinha C, Varambally S, Sreekumar A, et al. 2002. Molecular Cross-talk between the TRAIL and Interferon Signaling Pathways. J Biol Chem, 277(1): 575–585.

    PubMed  CAS  Google Scholar 

  49. Kumar H, Zheng M, Atherton S S, et al. 2006. Herpes simplex virus 1 infection induces the expression of proinflammatory cytokines, interferons and TLR7 in human corneal epithelial cells. Immunology, 117(2): 167–176.

    PubMed  Google Scholar 

  50. Kurt-Jones E A, Chan M, Zhou S, et al. 2004. Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Scie USA, 101(5): 1315–1320.

    CAS  Google Scholar 

  51. Lebon P. 1985. Inhibition of Herpes Simplex Virus Type 1-induced Interferon Synthesis by Monoclonal Antibodies against Viral Glycoprotein D and by Lysosomotropic Drugs. J Gen Virol, 66(12): 2781–2786.

    PubMed  CAS  Google Scholar 

  52. Leib D A, Harrison T E, Laslo K M, et al. 1999. Interferons Regulate the Phenotype of Wild-type and Mutant Herpes Simplex Viruses In Vivo. J Exp Med, 189(4): 663–672.

    PubMed  CAS  Google Scholar 

  53. Lin R, Noyce R S, Collins S E, et al. 2004. The Herpes Simplex Virus ICP0 RING Finger Domain Inhibits IRF3-and IRF7-Mediated Activation of Interferon-Stimulated Genes. J Virol, 78(4): 1675–1684.

    PubMed  CAS  Google Scholar 

  54. Lund J, Sato A, Akira S, et al. 2003. Toll-like Receptor 9-mediated Recognition of Herpes Simplex Virus-2 by Plasmacytoid Dendritic Cells. J Exp Med, 198(3): 513–520.

    PubMed  CAS  Google Scholar 

  55. Malmgaard L, Paludan S. R. 2003. Interferon (IFN)-{alpha}/{beta}, interleukin (IL)-12 and IL-18 coordinately induce production of IFN-{gamma} during infection with herpes simplex virus type 2. J Gen Virol, 84(9): 2497–2500.

    PubMed  CAS  Google Scholar 

  56. Malmgaard L, Melchjorsen J, Bowie A G, et al. 2004. Viral Activation of Macrophages through TLR-Dependent and-Independent Pathways. J Immunol, 173(11): 6890–6898.

    PubMed  CAS  Google Scholar 

  57. Medzhitov R, Preston-Hurlburt P, Kopp E, et al. 1998. MyD88 Is an Adaptor Protein in the hToll/IL-1 Receptor Family Signaling Pathways. Mol Cell, 2(2): 253–258.

    PubMed  CAS  Google Scholar 

  58. Melchjorsen J, Siren J, Julkunen I, et al. 2006. Induction of cytokine expression by herpes simplex virus in human monocyte-derived macrophages and dendritic cells is dependent on virus replication and is counteracted by ICP27 targeting NF-{kappa}B and IRF-3. J Gen Virol, 87(5): 1099–1108.

    PubMed  CAS  Google Scholar 

  59. Melroe G T, DeLuca N A, Knipe D M. 2004. Herpes Simplex Virus 1 Has Multiple Mechanisms for Blocking Virus-Induced Interferon Production. J Virol, 78(16): 8411–8420.

    PubMed  CAS  Google Scholar 

  60. Melroe G T, Silva L, Schaffer P A, et al. 2007. Recruitment of activated IRF-3 and CBP/p300 to herpes simplex virus ICP0 nuclear foci: Potential role in blocking IFN-[beta] induction. Virology, 360(2): 305.

    PubMed  CAS  Google Scholar 

  61. Mercurio F, Zhu H, Murray B W, et al. 1997. IKK-1 and IKK-2: Cytokine-Activated I{kappa}B Kinases Essential for NF-B Activation. Science, 278(5339): 860–866.

    PubMed  CAS  Google Scholar 

  62. Meylan E, Curran J, Hofmann K, et al. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature, 437(7062): 1167.

    PubMed  CAS  Google Scholar 

  63. Mohr I, Sternberg D, Ward S, et al. 2001. A Herpes Simplex Virus Type 1 γ134.5 Second-Site Suppressor Mutant That Exhibits Enhanced Growth in Cultured Glioblastoma Cells Is Severely Attenuated in Animals. J Virol, 75(11): 5189–5196.

    PubMed  CAS  Google Scholar 

  64. Mohrl I, Gluzman Y. 1996. A herpesvirus genetic element which affects translation in the absence of the viral GADD34 function. EMBO J, 15(17): 4759–4766.

    Google Scholar 

  65. Mossman K L, Saffran H A, Smiley J R. 2000. Herpes Simplex Virus ICP0 Mutants Are Hypersensitive to Interferon. J Virol, 74(4): 2052–2056.

    PubMed  CAS  Google Scholar 

  66. Mossman K L, Macgregor P F, Rozmus J J, et al. 2001. Herpes Simplex Virus Triggers and Then Disarms a Host Antiviral Response. J Virol, 75(2): 750–758.

    PubMed  CAS  Google Scholar 

  67. Mossman K L, Ashkar A A. 2005. Herpesviruses and the Innate Immune Response. Viral Immunol, 18(2): 267–281.

    PubMed  CAS  Google Scholar 

  68. Murphy J A, Duerst R J, Smith T J, et al. 2003. Herpes Simplex Virus Type 2 Virion Host Shutoff Protein Regulates Alpha/Beta Interferon but Not Adaptive Immune Responses during Primary Infection In Vivo. J Virol, 77(17): 9337–9345.

    PubMed  CAS  Google Scholar 

  69. Narita M, Ando Y, Soushi S, et al. 1998. The BglII-N fragment of herpes simplex virus type 2 contains a region responsible for resistance to antiviral effects of interferon. J Gen Virol, 79(3): 565–572.

    PubMed  CAS  Google Scholar 

  70. Nicholl M J, Robinson L H, Preston C M. 2000. Activation of cellular interferon-responsive genes after infection of human cells with herpes simplex virus type 1. J Gen Virol, 81(9): 2215–2218.

    PubMed  CAS  Google Scholar 

  71. Ninomiya-Tsuji J, Kishimoto K, Hiyama A, et al. 1999. The kinase TAK1 can activate the NIK-I[kappa]B as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature, 398(6724): 252.

    PubMed  CAS  Google Scholar 

  72. Noyce R S, Collins S E, Mossman K L. 2006. Identification of a Novel Pathway Essential for the Immediate-Early, Interferon-Independent Antiviral Response to Enveloped Virions. J Virol, 80(1): 226–235.

    PubMed  CAS  Google Scholar 

  73. Oganesyan G, Saha S K, Guo B, et al. 2006. Critical role of TRAF3 in the Toll-like receptor-dependent and-independent antiviral response. Nature, 439(7073): 208.

    PubMed  CAS  Google Scholar 

  74. Okabe Y, Kawane K, Akira S, et al. 2005. Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J Exp Med, 202(10): 1333–1339.

    PubMed  CAS  Google Scholar 

  75. Oshiumi H, Matsumoto M, Funami K, et al. 2003. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-[beta] induction. Nat Immunol, 4(2): 161.

    PubMed  CAS  Google Scholar 

  76. Overton H, McMillan D, Hope L, et al. 1994. Production of Host Shutoff-Defective Mutants of Herpes Simplex Virus Type 1 by Inactivation of the UL13 Gene. Virology, 202(1): 97.

    PubMed  CAS  Google Scholar 

  77. Paladino P, Cummings D T, Noyce R S, et al. 2006. The IFN-Independent Response to Virus Particle Entry Provides a First Line of Antiviral Defense That Is Independent of TLRs and Retinoic Acid-Inducible Gene I. J Immunol, 177(11): 8008–8016.

    PubMed  CAS  Google Scholar 

  78. Pasieka T J, Baas T, Carter V S, et al. 2006. Functional Genomic Analysis of Herpes Simplex Virus Type 1 Counteraction of the Host Innate Response. J Virol, 80(15): 7600–7612.

    PubMed  CAS  Google Scholar 

  79. Pasieka T J, Lu B, Crosby S D, et al. 2008. Herpes Simplex Virus Virion Host Shutoff Attenuates Establishment of the Antiviral State. J Virol, 82(11): 5527–5535.

    PubMed  CAS  Google Scholar 

  80. Pedersen E B, Haahr S, Mogensen S C. 1983. X-linked resistance of mice to high doses of herpes simplex virus type 2 correlates with early interferon production. Infect Immun, 42(2): 740–746.

    PubMed  CAS  Google Scholar 

  81. Perry A K, Chen G, Zheng D, et al. 2005. The host type I interferon response to viral and bacterial infections. Cell Res, 15(6): 407.

    PubMed  CAS  Google Scholar 

  82. Pichlmair A, Schulz O, Tan C P, et al. 2006. RIG-I-Mediated Antiviral Responses to Single-Stranded RNA Bearing 5′-Phosphates. Science, 314(5801): 997–1001.

    PubMed  CAS  Google Scholar 

  83. Platanias L C. 2005. Mechanisms of type-I-and type-II-interferon-mediated signalling. Nat Rev Immunol, 5(5):375.

    PubMed  CAS  Google Scholar 

  84. Preston C M, Harman A N, Nicholl M J. 2001. Activation of Interferon Response Factor-3 in Human Cells Infected with Herpes Simplex Virus Type 1 or Human Cytomegalovirus. J Virol, 75(19): 8909–8916.

    PubMed  CAS  Google Scholar 

  85. Rasmussen S B, Sorensen L N, Malmgaard L, et al. 2007. Type I Interferon Production during Herpes Simplex Virus Infection Is Controlled by Cell-Type-Specific Viral Recognition through Toll-Like Receptor 9, the Mitochondrial Antiviral Signaling Protein Pathway, and Novel Recognition Systems. J Virol, 81(24): 13315–13324.

    PubMed  CAS  Google Scholar 

  86. Reske A, Pollara G, Krummenacher C, et al. 2008. Glycoprotein-Dependent and TLR2-Independent Innate Immune Recognition of Herpes Simplex Virus-1 by Dendritic Cells. J Immunol, 180(11): 7525–7536.

    PubMed  CAS  Google Scholar 

  87. Roizman B. 1999. HSV gene functions: what have we learned that could be generally applicable to its near and distant cousins? Acta Virol, 43(2–3): 75–80.

    PubMed  CAS  Google Scholar 

  88. Roizman B, Knipe D M. 2001. Herpes simplex viruses and their replication. In: Fields Virology (Knipe D M, Howley P, Griffin D, et al ed.), 4th ed, vol. 2. Lippincott Williams & Wilkins, p 2399–2459.

  89. Rong Q, Alexander T S, Koski G K, et al. 2003. Multiple mechanisms for HSV-1 induction of interferon α production by peripheral blood mononuclear cells. Arch Virol, 148(2): 329.

    PubMed  CAS  Google Scholar 

  90. Sato A, Linehan M M, Iwasaki A. 2006. Dual recognition of herpes simplex viruses by TLR2 and TLR9 in dendritic cells. Proc Natl Acad Scie USA, 103(46): 17343–17348.

    CAS  Google Scholar 

  91. Sato M, Suemori H, Hata N, et al. 2000. Distinct and Essential Roles of Transcription Factors IRF-3 and IRF-7 in Response to Viruses for IFN-[alpha]/[beta] Gene Induction. Immunity, 13(4): 539.

    PubMed  CAS  Google Scholar 

  92. Sato M, Taniguchi T, Tanaka N. 2001. The interferon system and interferon regulatory factor transcription factors-studies from gene knockout mice. Cytokine & Growth Factor Rev, 12(2–3): 133.

    CAS  Google Scholar 

  93. Sato S, Sugiyama M, Yamamoto M, et al. 2003. Toll/IL-1 Receptor Domain-Containing Adaptor Inducing IFN-{beta} (TRIF) Associates with TNF Receptor-Associated Factor 6 and TANK-Binding Kinase 1, and Activates Two Distinct Transcription Factors, NF-{kappa}B and IFN-Regulatory Factor-3, in the Toll-Like Receptor Signaling. J Immunol, 171(8): 4304–4310.

    PubMed  CAS  Google Scholar 

  94. Seth R B, Sun L, Ea C K, et al. 2005. Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein that Activates NF-κB and IRF3. Cell, 122(5): 669–682.

    PubMed  CAS  Google Scholar 

  95. Sharma S, tenOever B R, Grandvaux N, et al. 2003. Triggering the Interferon Antiviral Response Through an IKK-Related Pathway. Science, 300(5622): 1148–1151.

    PubMed  CAS  Google Scholar 

  96. Shimada T, Kawai T, Takeda K, et al. 1999. IKK-i, a novel lipopolysaccharide-inducible kinase that is related to I{kappa}B kinases. Int Immunol, 11(8): 1357–1362.

    PubMed  CAS  Google Scholar 

  97. Shirota H, Ishii K J, Takakuwa H, et al. 2006. Contribution of interferon-β to the immune activation induced by double-stranded DNA. Immunology, 118(3): 302–310.

    PubMed  CAS  Google Scholar 

  98. Smiley J R. 2004. Herpes Simplex Virus Virion Host Shutoff Protein: Immune Evasion Mediated by a Viral RNase? J Virol, 78(3): 1063–1068.

    PubMed  CAS  Google Scholar 

  99. Stetson D B, Medzhitov R. 2006. Type I Interferons in Host Defense. Immunity, 25(3): 373–381.

    PubMed  CAS  Google Scholar 

  100. Stetson D B, Medzhitov R. 2006. Recognition of Cytosolic DNA Activates an IRF3-Dependent Innate Immune Response. Immunity, 24(1): 93–103.

    PubMed  CAS  Google Scholar 

  101. Su Y H, Oakes J E, Lausch R N. 1993. Mapping the genetic region coding for herpes simplex virus resistance to mouse interferon {alpha}/beta. J Gen Virol, 74(11): 2325–2332.

    PubMed  CAS  Google Scholar 

  102. Sun Q, Sun L, Liu H H, et al. 2006. The Specific and Essential Role of MAVS in Antiviral Innate Immune Responses. Immunity, 24(5): 633.

    PubMed  CAS  Google Scholar 

  103. Suzutani T, Nagamine M, Shibaki T, et al. 2000. The role of the UL41 gene of herpes simplex virus type 1 invasion of non-specific host defence mechanisms during primary infection. J Gen Virol, 81(7): 1763–1771.

    PubMed  CAS  Google Scholar 

  104. Takaoka A, Wang Z, Choi M K, et al. 2007. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature, 448(7152): 501.

    PubMed  CAS  Google Scholar 

  105. Takeda K, Akira S. 2004. TLR signaling pathways Semin Immunol, 16(1): 3–9.

    PubMed  CAS  Google Scholar 

  106. Wang Z, Choi M K, Ban T, et al. 2008. Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proc Natl Acad Scie USA, 105(14): 5477–5482.

    CAS  Google Scholar 

  107. Wathelet M G, Lin C H, Parekh B S, et al. 1998. Virus Infection Induces the Assembly of Coordinately Activated Transcription Factors on the IFN-[beta] Enhancer In Vivo. Mol Cell, 1(4): 507.

    PubMed  CAS  Google Scholar 

  108. Weber F, Wagner V, Rasmussen S B, et al. 2006. Double-Stranded RNA Is Produced by Positive-Strand RNA Viruses and DNA Viruses but Not in Detectable Amounts by Negative-Strand RNA Viruses. J Virol, 80(10): 5059–5064.

    PubMed  CAS  Google Scholar 

  109. Xu L G, Wang Z, Han K J, et al. 2005. VISA Is an Adapter Protein Required for Virus-Triggered IFN-β Signaling. Mol Cell, 119(6): 727–740.

    PubMed  CAS  Google Scholar 

  110. Yamamoto M, Sato S, Mori K, et al. 2002. Cutting Edge: A Novel Toll/IL-1 Receptor Domain-Containing Adapter That Preferentially Activates the IFN-{beta} Promoter in the Toll-Like Receptor Signaling. J Immunol, 169(12): 6668–6672.

    PubMed  CAS  Google Scholar 

  111. Yang H, Lin C H, Ma G, et al. 2002. Transcriptional activity of interferon regulatory factor (IRF)-3 depends on multiple protein-protein interactions. Eur J Biochem, 269(24): 6142–6151.

    PubMed  CAS  Google Scholar 

  112. Yang K, Puel A, Zhang S, et al. 2005. Human TLR-7-,-8-, and-9-mediated induction of IFN-[alpha]/[beta] and-[lambda] is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity, 23(5): 465.

    PubMed  CAS  Google Scholar 

  113. Yoneyama M, Suhara W, Fukuhara Y, et al. 1998. Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J, 17(4): 1087–1095.

    PubMed  CAS  Google Scholar 

  114. Yoneyama M, Kikuchi M, Natsukawa T, et al. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol, 5(7): 730.

    PubMed  CAS  Google Scholar 

  115. Zandi E, Rothwarf D M, Delhase M, et al. 1997. The IκB Kinase Complex (IKK) Contains Two Kinase Subunits, IKKα and IKKβ, Necessary for IκB Phosphorylation and NF-κB Activation. cell, 91(2): 243–252.

    PubMed  CAS  Google Scholar 

  116. Zawatzky R, Kirchner H, DeMaeyer-Guignard J, et al. 1982. An X-linked Locus Influences the Amount of Circulating Interferon Induced in the Mouse by Herpes Simplex Virus Type 1. J Gen Virol, 63(2): 325–332.

    PubMed  CAS  Google Scholar 

  117. Zhang S Y, Jouanguy E, Sancho-Shimizu V, et al. 2007. Human Toll-like receptor-dependent induction of interferons in protective immunity to viruses. Immunol Rev, 220(1): 225–236.

    PubMed  CAS  Google Scholar 

  118. Zheng M, Klinman D M, Gierynska M, et al. 2002. DNA containing CpG motifs induces angiogenesis. Proc Natl Acad Scie USA, 99(13): 8944–8949.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Verpooten, D. & He, B. Herpes simplex viruses and induction of interferon responses. Virol. Sin. 23, 416–428 (2008). https://doi.org/10.1007/s12250-008-2999-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-008-2999-7

Key words

CLC number

Navigation