Skip to main content

Advertisement

Log in

Angiogenesis, Kaposi’s sarcoma and Kaposi’s sarcoma-associated herpesvirus

  • Published:
Virologica Sinica

Abstract

Tumor angiogenesis is the uncontrolled growth of blood vessels in tumors, serving to supply nutrients and oxygen, and remove metabolic wastes. Kaposi’s sarcoma (KS), a multifocal angioproliferative disorder characterized by spindle cell proliferation, neo-angiogenesis, inflammation, and edema, is associated with infection by Kaposi’s sarcoma-associated herpesvirus (KSHV). Recent studies indicate that KSHV infection directly promotes angiogenesis and inflammation through an autocrine and paracrine mechanism by inducing pro-angiogenic and pro-inflammatory cytokines. Many of these cytokines are also expressed in KS lesions, implicating a direct role of KSHV in the pathogenesis of this malignancy. Several KSHV genes are involved in KSHV-induced angiogenesis. These studies have provided insights into the pathogenesis of KS, and identified potential therapeutic targets for this malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aoki Y, Jaffe E S, Chang Y, et al. 1999. Angiogenesis and hematopoiesis induced by Kaposi’s sarcoma-associated herpesvirus-encoded interleukin-6. Blood, 93:4034–4043.

    PubMed  CAS  Google Scholar 

  2. Ballestas M E, Chatis P A, Kaye K M. 1999. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science, 284:641–644.

    Article  PubMed  CAS  Google Scholar 

  3. Barillari G, Gendelman R, Gallo R C, et al. 1993. The Tat protein of human immunodeficiency virus type 1, a growth factor for AIDS Kaposi’s sarcoma and cytokine-activated vascular cells, induces adhesion of the same cell types by using integrin receptors recognizing the RGD amino acid sequence. Proc Natl Acad Sci USA, 90:7941–7945.

    Article  PubMed  CAS  Google Scholar 

  4. Barillari G, Sgadari C, Palladino C, et al. 1999. Inflammatory cytokines synergize with the HIV-1 Tat protein to promote angiogenesis and Kaposi’s sarcoma via induction of basic fibroblast growth factor and the alpha v beta 3 integrin. J Immunol, 163:1929–1935.

    PubMed  CAS  Google Scholar 

  5. Boshoff C, Endo Y, Collins P D, et al. 1997. Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines. Science, 278:290–294.

    Article  PubMed  CAS  Google Scholar 

  6. Brinkmann M M, Glenn M, Rainbow L, et al. 2003. Activation of mitogen-activated protein kinase and NF-kappaB pathways by a Kaposi’s sarcoma-associated herpesvirus K15 membrane protein. J Virol, 77:9346–9358.

    Article  PubMed  CAS  Google Scholar 

  7. Brinkmann M M, Pietrek M, Dittrich-Breiholz O, et al. 2007. Modulation of host gene expression by the K15 protein of Kaposi’s sarcoma-associated herpesvirus. J Virol, 81:42–58.

    Article  PubMed  CAS  Google Scholar 

  8. Cai Q, Lan K, Verma S C, et al. 2006. Kaposi’s sarcoma-associated herpesvirus latent protein LANA interacts with HIF-1 alpha to upregulate RTA expression during hypoxia: Latency control under low oxygen conditions. J Virol, 80:7965–7975.

    Article  PubMed  CAS  Google Scholar 

  9. Cai Q, Murakami M, Si H, et al. 2007. A potential alpha-helix motif in the amino terminus of LANA encoded by Kaposi’s sarcoma-associated herpesvirus is critical for nuclear accumulation of HIF-1alpha in normoxia. J Virol, 81:10413–10423.

    Article  PubMed  CAS  Google Scholar 

  10. Cai Q L, Knight J S, Verma S C, et al. 2006. EC5S ubiquitin complex is recruited by KSHV latent antigen LANA for degradation of the VHL and p53 tumor suppressors. PLoS Pathog, 2:e116.

    Article  PubMed  CAS  Google Scholar 

  11. Carroll P A, Kenerson H L, Yeung R S, et al. 2006. Latent Kaposi’s sarcoma-associated herpesvirus infection of endothelial cells activates hypoxia-induced factors. J Virol, 80:10802–10812.

    Article  PubMed  CAS  Google Scholar 

  12. Chang Y, Cesarman E, Pessin M S, et al. 1994. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science, 266: 1865–1869.

    Article  PubMed  CAS  Google Scholar 

  13. Chatterjee M, Osborne J, Bestetti G, et al. 2002. Viral IL-6-induced cell proliferation and immune evasion of interferon activity. Science, 298:1432–1435.

    Article  PubMed  CAS  Google Scholar 

  14. Chen S, Bacon K B, Li L, et al. 1998. In vivo inhibition of CC and CX3C chemokine-induced leukocyte infiltration and attenuation of glomerulonephritis in Wistar-Kyoto (WKY) rats by vMIP-II. J Exp Med, 188:193–198.

    Article  PubMed  CAS  Google Scholar 

  15. Deryugina E I, Quigley J P. 2006. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev, 25:9–34.

    Article  PubMed  CAS  Google Scholar 

  16. Dourmishev L A, Dourmishev A L, Palmeri D, et al. 2003. Molecular genetics of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis. Microbiol Mol Biol Rev, 67:175–212.

    Article  PubMed  CAS  Google Scholar 

  17. Esteban M, Garcia M A, Domingo-Gil E, et al. 2003. The latency protein LANA2 from Kaposi’s sarcoma-associated herpesvirus inhibits apoptosis induced by dsRNA-activated protein kinase but not RNase L activation. J Gen Virol, 84:1463–1470.

    Article  PubMed  CAS  Google Scholar 

  18. Ferrara N, Gerber H P, LeCouter J. 2003. The biology of VEGF and its receptors. Nat Med, 9:669–676.

    Article  PubMed  CAS  Google Scholar 

  19. Fiorelli V, Barillari G, Toschi E, et al. 1999. IFN-gamma induces endothelial cells to proliferate and to invade the extracellular matrix in response to the HIV-1 Tat protein: implications for AIDS-Kaposi’s sarcoma pathogenesis. J Immunol, 162:1165–1170.

    PubMed  CAS  Google Scholar 

  20. Fiorelli V, Gendelman R, Samaniego F, et al. 1995. Cytokines from activated T cells induce normal endothelial cells to acquire the phenotypic and functional features of AIDS-Kaposi’s sarcoma spindle cells. J Clin Invest, 95:1723–1734.

    Article  PubMed  CAS  Google Scholar 

  21. Fiorelli V, Gendelman R, Sirianni M C, et al. 1998. gamma-Interferon produced by CD8+ T cells infiltrating Kaposi’s sarcoma induces spindle cells with angiogenic phenotype and synergy with human immunodeficiency virus-1 Tat protein: an immune response to human herpesvirus-8 infection? Blood, 91:956–967.

    PubMed  CAS  Google Scholar 

  22. Foussat A, Wijdenes J, Bouchet L, et al. 1999. Human interleukin-6 is in vivo an autocrine growth factor for human herpesvirus-8-infected malignant B lymphocytes. Eur Cytokine Netw, 10:501–508.

    PubMed  CAS  Google Scholar 

  23. Friborg J Jr, Kong W, Hottiger M O, et al. 1999. p53 inhibition by the LANA protein of KSHV protects against cell death. Nature, 402:889–894.

    PubMed  CAS  Google Scholar 

  24. Fujimuro M, Wu F Y, ApRhys C, et al. 2003. A novel viral mechanism for dysregulation of beta-catenin in Kaposi’s sarcoma-associated herpesvirus latency. Nat Med, 9:300–306.

    Article  PubMed  CAS  Google Scholar 

  25. Gold M R. 2002. To make antibodies or not: signaling by the B-cell antigen receptor. Trends Pharmacol Sci, 23:316–324.

    Article  PubMed  CAS  Google Scholar 

  26. Haddad L, El Hajj H, Abou-Merhi R, et al. 2008. KSHV-transformed primary effusion lymphoma cells induce a VEGF-dependent angiogenesis and establish functional gap junctions with endothelial cells. Leukemia, 22:826–834.

    Article  PubMed  CAS  Google Scholar 

  27. Hanahan D, Folkman J. 1996. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86:353–364.

    Article  PubMed  CAS  Google Scholar 

  28. Huang Y Q, Li J J, Moscatelli D, et al. 1993. Expression of int-2 oncogene in Kaposi’s sarcoma lesions. J Clin Invest, 91:1191–1197.

    Article  PubMed  CAS  Google Scholar 

  29. Kakoola D N, Sheldon J, Byabazaire N, et al. 2001. Recombination in human herpesvirus-8 strains from Uganda and evolution of the K15 gene. J Gen Virol, 82:2393–2404.

    PubMed  CAS  Google Scholar 

  30. Kledal T N, Rosenkilde M M, Coulin F, et al. 1997. A broad-spectrum chemokine antagonist encoded by Kaposi’s sarcoma-associated herpesvirus. Science, 277:1656–1659.

    Article  PubMed  CAS  Google Scholar 

  31. Lagunoff M, Majeti R, Weiss A, et al. 1999. Deregulated signal transduction by the K1 gene product of Kaposi’s sarcoma-associated herpesvirus. Proc Natl Acad Sci USA, 96:5704–5709.

    Article  PubMed  CAS  Google Scholar 

  32. Lan K, Kuppers D A, Verma S C, et al. 2004. Kaposi’s sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen inhibits lytic replication by targeting Rta: a potential mechanism for virus-mediated control of latency. J Virol, 78:6585–6594.

    Article  PubMed  CAS  Google Scholar 

  33. Lee B S, Alvarez X, Ishido S, et al. 2000. Inhibition of intracellular transport of B cell antigen receptor complexes by Kaposi’s sarcoma-associated herpesvirus K1. J Exp Med, 192:11–21.

    Article  PubMed  CAS  Google Scholar 

  34. Lee H, Guo J, Li M, et al. 1998. Identification of an immunoreceptor tyrosine-based activation motif of K1 transforming protein of Kaposi’s sarcoma-associated herpesvirus. Mol Cell Biol, 18:5219–5228.

    PubMed  CAS  Google Scholar 

  35. Lemieux C, Maliba R, Favier J, et al. 2005. Angiopoietins can directly activate endothelial cells and neutrophils to promote proinflammatory responses. Blood, 105:1523–1530.

    Article  PubMed  CAS  Google Scholar 

  36. Liu C, Okruzhnov Y, Li H, et al. 2001. Human herpesvirus 8 (HHV-8)-encoded cytokines induce expression of and autocrine signaling by vascular endothelial growth factor (VEGF) in HHV-8-infected primary-effusion lymphoma cell lines and mediate VEGF-independent antiapoptotic effects. J Virol, 75:10933–10940.

    Article  PubMed  CAS  Google Scholar 

  37. Lubyova B, Pitha P M. 2000. Characterization of a novel human herpesvirus 8-encoded protein, vIRF-3, that shows homology to viral and cellular interferon regulatory factors. J Virol, 74:8194–8201.

    Article  PubMed  CAS  Google Scholar 

  38. Masood R, Cesarman E, Smith D L, et al. 2002. Human herpesvirus-8-transformed endothelial cells have functionally activated vascular endothelial growth factor/vascular endothelial growth factor receptor. Am J Pathol, 160:23–29.

    PubMed  CAS  Google Scholar 

  39. Masood R, Xia G, Smith D L, et al. 2005. Ephrin B2 expression in Kaposi sarcoma is induced by human herpesvirus type 8: phenotype switch from venous to arterial endothelium. Blood, 105:1310–1318.

    Article  PubMed  CAS  Google Scholar 

  40. McAllister S C, Hansen S G, Ruhl R A, et al. 2004. Kaposi sarcoma-associated herpesvirus (KSHV) induces heme oxygenase-1 expression and activity in KSHV-infected endothelial cells. Blood, 103:3465–3473.

    Article  PubMed  CAS  Google Scholar 

  41. Mitsuyasu R T. 1988. AIDS-related Kaposi’s sarcoma: a review of its pathogenesis and treatment. Blood Rev, 2:222–231.

    Article  PubMed  CAS  Google Scholar 

  42. Moore P S, Boshoff C, Weiss R A, et al. 1996. Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science, 274:1739–1744.

    Article  PubMed  CAS  Google Scholar 

  43. Mori Y, Nishimoto N, Ohno M, et al. 2000. Human herpesvirus 8-encoded interleukin-6 homologue (viral IL-6) induces endogenous human IL-6 secretion. J Med Virol, 61:332–335.

    Article  PubMed  CAS  Google Scholar 

  44. Munoz-Fontela C, Marcos-Villar L, Gallego P, et al. 2007. Latent protein LANA2 from Kaposi’s sarcoma-associated herpesvirus interacts with 14-3-3 proteins and inhibits FOXO3a transcription factor. J Virol, 81: 1511–1516.

    Article  PubMed  CAS  Google Scholar 

  45. Mutlu A D, Cavallin L E, Vincent L, et al. 2007. In vivo-restricted and reversible malignancy induced by human herpesvirus-8 KSHV: a cell and animal model of virally induced Kaposi’s sarcoma. Cancer Cell, 11:245–258.

    Article  PubMed  CAS  Google Scholar 

  46. Naranatt P P, Krishnan H H, Svojanovsky S R, et al. 2004. Host gene induction and transcriptional reprogramming in Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8)-infected endothelial, fibroblast, and B cells: insights into modulation events early during infection. Cancer Res, 64:72–84.

    Article  PubMed  CAS  Google Scholar 

  47. Polson A G, Wang D, DeRisi J, et al. 2002. Modulation of host gene expression by the constitutively active G protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus. Cancer Res, 62:4525–4530.

    PubMed  CAS  Google Scholar 

  48. Pugh C W, and Ratcliffe P J. 2003. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med, 9:677–684.

    Article  PubMed  CAS  Google Scholar 

  49. Qian L W, Xie J, Ye F, et al. 2007. Kaposi’s sarcoma-associated herpesvirus infection promotes invasion of primary human umbilical vein endothelial cells by inducing matrix metalloproteinases. J Virol, 81:7001–7010.

    Article  PubMed  CAS  Google Scholar 

  50. Radkov S A, Kellam P, Boshoff C. 2000. The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nat Med, 6:1121–1127.

    Article  PubMed  CAS  Google Scholar 

  51. Rivas C, Thlick A E, Parravicini C, et al. 2001. Kaposi’s sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J Virol, 75:429–438.

    Article  PubMed  CAS  Google Scholar 

  52. Samaniego F, Markham P D, Gendelman R, et al. 1998. Vascular endothelial growth factor and basic fibroblast growth factor present in Kaposi’s sarcoma (KS) are induced by inflammatory cytokines and synergize to promote vascular permeability and KS lesion development. Am J Pathol, 152:1433–1443.

    PubMed  CAS  Google Scholar 

  53. Samaniego F, Pati S, Karp J E, et al. 2001. Human herpesvirus 8 K1-associated nuclear factor-kappa B-dependent promoter activity: role in Kaposi’s sarcoma inflammation? J Natl Cancer Inst Monogr, 28:15–23.

    PubMed  Google Scholar 

  54. Samaniego F, Young D, Grimes C, et al. 2002. Vascular endothelial growth factor and Kaposi’s sarcoma cells in human skin grafts. Cell Growth Differ, 13:387–395.

    PubMed  CAS  Google Scholar 

  55. Shan B, Morris C A, Zhuo Y, et al. 2007. Activation of proMMP-2 and Src by HHV8 vGPCR in human pulmonary arterial endothelial cells. J Mol Cell Cardiol, 42:517–525.

    Article  PubMed  CAS  Google Scholar 

  56. Shin Y C, Joo C H, Gack M U, et al. 2008. Kaposi’s sarcoma-associated herpesvirus viral IFN regulatory factor 3 stabilizes hypoxia-inducible factor-1 alpha to induce vascular endothelial growth factor expression. Cancer Res, 68: 1751–1759.

    Article  PubMed  CAS  Google Scholar 

  57. Sirianni M C, Vincenzi L, Fiorelli V, et al. 1998. gamma-Interferon production in peripheral blood mononu-clear cells and tumor infiltrating lymphocytes from Kaposi’s sarcoma patients: correlation with the presence of human herpesvirus-8 in peripheral blood mononuclear cells and lesional macrophages. Blood, 91:968–976.

    PubMed  CAS  Google Scholar 

  58. Sivakumar R, Sharma-Walia N, Raghu H, et al. 2008. Kaposi’s sarcoma-associated herpesvirus induces sustained levels of vascular endothelial growth factors A and C early during in vitro infection of human microvascular dermal endothelial cells: biological implications. J Virol, 82:1759–1776.

    Article  PubMed  CAS  Google Scholar 

  59. Soulier J, Grollet L, Oksenhendler E, et al. 1995. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood, 86:1276–1280.

    PubMed  CAS  Google Scholar 

  60. Stine J T, Wood C, Hill M, et al. 2000. KSHV-encoded CC chemokine vMIP-III is a CCR4 agonist, stimulates angiogenesis, and selectively chemoattracts TH2 cells. Blood, 95:1151–1157.

    PubMed  CAS  Google Scholar 

  61. Tappero J W, Conant M A, Wolfe S F, et al. 1993. Kaposi’s sarcoma. Epidemiology, pathogenesis, histology, clinical spectrum, staging criteria and therapy. J Am Acad Dermatol, 28:371–395.

    Article  PubMed  CAS  Google Scholar 

  62. Tomlinson C C, Damania B. 2004. The K1 protein of Kaposi’s sarcoma-associated herpesvirus activates the Akt signaling pathway. J Virol, 78:1918–1927.

    Article  PubMed  CAS  Google Scholar 

  63. Vart R J, Nikitenko L L, Lagos D, et al. 2007. Kaposi’s sarcoma-associated herpesvirus-encoded interleukin-6 and G-protein-coupled receptor regulate angiopoietin-2 expression in lymphatic endothelial cells. Cancer Res, 67: 4042–4051.

    Article  PubMed  CAS  Google Scholar 

  64. Wang G L, Jiang B H, Rue E A, et al. 1995. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA, 92:5510–5514.

    Article  PubMed  CAS  Google Scholar 

  65. Wang H W, Trotter M W, Lagos D, et al. 2004. Kaposi’s sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet, 36:687–693.

    Article  PubMed  CAS  Google Scholar 

  66. Wang L, Brinkmann M M, Pietrek M, et al. 2007. Functional characterization of the M-type K15-encoded membrane protein of Kaposi’s sarcoma-associated herpesvirus. J Gen Virol, 88:1698–1707.

    Article  PubMed  CAS  Google Scholar 

  67. Wang L, Wakisaka N, Tomlinson C C, et al. 2004. The Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) K1 protein induces expression of angiogenic and invasion factors. Cancer Res, 64:2774–2781.

    Article  PubMed  CAS  Google Scholar 

  68. Weindel K, Marme D, Weich H A. 1992. AIDS-associated Kaposi’s sarcoma cells in culture express vascular endothelial growth factor. Biochem Biophys Res Commun, 183:1167–1174.

    Article  PubMed  CAS  Google Scholar 

  69. Xie J, Pan H, Yoo S, et al. 2005. Kaposi’s sarcoma-associated herpesvirus induction of AP-1 and interleukin 6 during primary infection mediated by multiple mitogen-activated protein kinase pathways. J Virol, 79: 15027–15037.

    Article  PubMed  CAS  Google Scholar 

  70. Yang T Y, Chen S C, Leach M W, et al. 2000. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi’s sarcoma. J Exp Med, 191:445–454.

    Article  PubMed  CAS  Google Scholar 

  71. Ye F C, Blackbourn D J, Mengel M, et al. 2007. Kaposi’s sarcoma-associated herpesvirus promotes angiogenesis by inducing angiopoietin-2 expression via AP-1 and Ets1. J Virol, 81:3980–3991.

    Article  PubMed  CAS  Google Scholar 

  72. Zietz C, Hotz B, Sturzl M, et al. 1996. Aortic endothelium in HIV-1 infection: chronic injury, activation, and increased leukocyte adherence. Am J Pathol, 149: 1887–1898.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shou-jiang gao or Lin-ding Wang.

Additional information

Foundation items: The Knowledge Innovation Program of the Chinese Academy of Sciences Chinese Academy of Sciences (0702121YJ1); Open Research Fund Program of the State Key Laboratory of Virology of China (2007013); A Type B Outstanding Abroad Young Scientist Award (30328001) from the National Science Foundation of China; and grants from the National Institutes of Health (CA096512, CA124332, CA119889 and DE017333).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, T., Ye, Fc., gao, Sj. et al. Angiogenesis, Kaposi’s sarcoma and Kaposi’s sarcoma-associated herpesvirus. Virol. Sin. 23, 449–458 (2008). https://doi.org/10.1007/s12250-008-2998-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-008-2998-8

Key words

CLC number

Navigation