Skip to main content
Log in

Baculovirus RNA polymerase: Activities, composition, and evolution

  • Published:
Virologica Sinica

Abstract

Baculoviruses are the only nuclear replicating DNA-containing viruses that encode their own DNA-directed RNA polymerase (RNAP). The baculovirus RNAP is specific for the transcription of genes expressed after virus DNA replication. It is composed of four subunits, making it the simplest multisubunit RNAP known. Two subunits contain motifs found at the catalytic center of other RNAPs and a third has capping enzyme functions. The function of the fourth subunit is not known. Structural studies on this unique RNAP will provide new insights into the functions of this enzyme and the regulation of viral genes and may be instrumental to optimize the baculovirus gene expression system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Acharya A, Gopinathan K P. 2002. Characterization of late gene expression factors lef-9 and lef-8 from Bombyx mori nucleopolyhedrovirus. J Gen Virol, 83: 2015–2023.

    PubMed  CAS  Google Scholar 

  2. Allison L A, Moyle M, Shales M, et al. 1985. Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell, 42: 599–610.

    Article  PubMed  CAS  Google Scholar 

  3. Beniya H, Funk C J, Rohrmann G F, et al. 1996. Purification of a virus-induced RNA polymerase from Autographa californica nuclear polyhedrosis virus-infected Spodoptera frugiperda cells that accurately initiates late and very late transcription in vitro. Virology, 216: 12–19.

    Article  PubMed  CAS  Google Scholar 

  4. Berretta M F, Passarelli A L. 2006. Function of Spodoptera exigua nucleopolyhedrovirus late gene expression factors in the insect cell line SF-21. Virology, 355: 82–93.

    Article  PubMed  CAS  Google Scholar 

  5. Brown M, Crawford A M, Faulkner P. 1979. Genetic analysis of a baculovirus Autographa californica nuclear polyhedrosis virus part 1 isolation of temperature sensitive mutants and assortment into complementation groups. J Virol, 31: 190–198.

    PubMed  CAS  Google Scholar 

  6. Brown M, Faulkner P. 1980. A partial genetic map of the baculovirus Autographa californica nuclear polyhedrosis virus based on recombination studies with ts mutants. J Gen Virol, 48: 247–252.

    CAS  Google Scholar 

  7. Carstens E B, Chan H, Yu H, et al.1994. Genetic analyses of temperature-sensitive mutations in baculovirus late expression factors. Virology, 204: 323–337.

    Article  PubMed  CAS  Google Scholar 

  8. Carstens E B, Lu A L, Chan H B. 1993. Sequence, transcriptional mapping, and overexpression of p47, a baculovirus gene regulating late gene expression. J Virol, 67: 2513–2520.

    PubMed  CAS  Google Scholar 

  9. Chisholm G E, Henner D J. 1988. Multiple early transcripts and splicing of the Autographa californica nuclear polyhedrosis virus ie-1 gene. J Virol, 62: 3193–3200.

    PubMed  CAS  Google Scholar 

  10. Corden J L. 1990. Tails of RNA polymerase II. Trends Biol Sci, 15: 413–416.

    Google Scholar 

  11. Cramer P, Bushnell D A, Fu J, et al. 2000. Architecture of RNA polymerase II an implications for the transcription mechanism. Science, 288: 640–649.

    Article  PubMed  CAS  Google Scholar 

  12. Cramer P, Bushnell D A, Kornberg R D. 2001. Structural basis of transcription: RNA polymerase II at 2.8 Angstrom resolution. Science, 292: 1861–1876.

    Article  Google Scholar 

  13. Crouch E A, Passarelli A L. Unpublished results.

  14. Duncan R, Faulkner P. 1982. Bromodeoxy uridine induced mutants of Autographa californica nuclear polyhedrosis virus defective in occlusion body formation. J Gen Virol, 62: 369–374.

    PubMed  CAS  Google Scholar 

  15. Durantel D, Croizier G, Ravallec M, et al. 1998. Temporal expression of hte AcMNPV lef-4 gene and subcellular localization of the protein. Virology, 241: 276–284.

    Article  PubMed  CAS  Google Scholar 

  16. Evers R, Hammer A, Köck J, et al. 1989. Trypanosoma brucei contains two RNA polymerase II largest subunit genes with an altered C-terminal domain. Cell, 56: 585–597.

    Article  PubMed  CAS  Google Scholar 

  17. Fuchs L Y, Woods M S, Weaver R F. 1983. Viral transcription during Autographa californica nuclear polyhedrosis virus infection: a novel RNA polymerase induced in infected Spodoptera frugiperda cells. J Virol, 43: 641–646.

    Google Scholar 

  18. Funk C J, Harwood S H, Rohrmann G F. 1998. Differential stability of baculovirus late transcription complexes during initiation and elongation. Virology, 241: 131–140.

    Article  PubMed  CAS  Google Scholar 

  19. Glocker B, Hoopes J, Hodges R R L, et al. 1993. In vitro transcription from baculovirus late gene promoters: accurate mRNA initiation by nuclear extracts prepared from infected Spodoptera frugiperda cells. J Virol, 67: 3771–3776.

    PubMed  CAS  Google Scholar 

  20. Gordon J D, Carstens E B. 1984. Phenotypic characterization and physical mapping of a temperature sensitive mutant of Autographa californica nuclear polyhedrosis virus defective in DNA synthesis. Virology, 138: 69–81.

    Article  PubMed  CAS  Google Scholar 

  21. Gross C H, Shuman S. 1998. Characterization of a baculovirus-encoded RNA 5′-triphosphatase. J Virol, 72: 7057–7063.

    PubMed  CAS  Google Scholar 

  22. Gross C H, Shuman S. 1998. RNA 5′-triphosphatase, nucleoside triphosphatase, and guanylyltransferase activities of baculovirus LEF-4 protein. J Virol, 72: 10020–10028.

    PubMed  CAS  Google Scholar 

  23. Grula M A, Buller P L, Weaver R F. 1981. α-amanitin-resistant viral RNA synthesis in nuclei isolated from nuclear polyhedrosis virus-infected Heliothis zea larvae and Spodoptera frugiperda cells. J Virol, 38:916–921.

    PubMed  CAS  Google Scholar 

  24. Guarino L A, Dong W, Jin J. 2002. In vitro activity of the baculovirus late expression factor LEF-5. J Virol. 76: 12663–12675.

    Article  PubMed  CAS  Google Scholar 

  25. Guarino L A, Jin J, Dong W. 1998. Guanylyltransferase activity of the LEF-4 subunit of baculovirus RNA polymerase. J Virol, 72: 10003–10010.

    PubMed  CAS  Google Scholar 

  26. Guarino L A, Xu B, Jin J, et al. 1998. A virus-encoded RNA polymerase purified from bacul-ovirus-infected cells. J Virol, 72: 7985–7991.

    PubMed  CAS  Google Scholar 

  27. Hayakawa T, Ko R, Okano K, et al. 1999. Sequence analysis of the Xestia c-nigrum granulovirus genome. Virology, 262: 277–297.

    Article  PubMed  CAS  Google Scholar 

  28. Ho C K, Pie Y, Shuman S. 1998. Yeast and viral RNA 5′ triphosphatases comprise a new nucleoside triphosphatase family. J Biol Chem, 273: 34151–34156.

    Article  PubMed  CAS  Google Scholar 

  29. Huh N E, Weaver R F. 1990. Identifying the RNA polymerases that synthesize specific transcripts of the Autographa californica nuclear polyhedrosis virus. J Gen Virol, 71: 195–202.

    Article  PubMed  CAS  Google Scholar 

  30. Jin J, Dong W, Guarino L A. 1998. The LEF-4 subunit of baculovirus RNA polymerase has RNA 5′-triphosphatase and ATPase activities. J Virol, 72: 10011–10019.

    PubMed  CAS  Google Scholar 

  31. Jin J, Guarino L A. 2000. 3′-end formation of baculovirus late RNAs. J Virol, 74: 8930–8937.

    Article  PubMed  CAS  Google Scholar 

  32. Jun-Chuan Q, Weaver R F. 1982. Capping of viral RNA in cultured Spodoptera frugiperda cells infected with Autographa californica nuclear polyhedrosis virus. J Virol, 43: 234–240.

    PubMed  Google Scholar 

  33. Knebel-Mörsdorf D, Quadt I, Li Y, et al. 2006. Expression of baculovirus late and very late genes dependes on LEF-4, a component of the viral RNA polymerase whose guanyltransferase function is essential. J Virol, 80: 4168–4173.

    Article  PubMed  CAS  Google Scholar 

  34. Kool M, Ahrens C H, Goldbach R W, et al. 1994. Identification of genes involved in DNA replication of the Autographa californica baculovirus. Proc Natl Acad Sci USA, 91: 11212–11216.

    Article  PubMed  CAS  Google Scholar 

  35. Kovacs G R, Guarino L A, Graham B L, et al. 1991. Identification of spliced baculovirus RNAs expressed late in infection. Virology, 185: 633–643.

    Article  PubMed  CAS  Google Scholar 

  36. Lauzon H A M, Lucarotti C J, Krell P J, et al. 2004. Sequence and organization of the Neodiprion lecontei nucleopolyhedrovirus genome. J Virol, 78: 7023–7035.

    Article  PubMed  CAS  Google Scholar 

  37. Lee H H, Miller L K. 1979. Isolation, complementation, and initial characterization of temperature-sensitive mutants of the baculovirus Autographa californica nuclear polyhedrosis virus. J Virol, 31: 240–252.

    PubMed  Google Scholar 

  38. Li L, Harwood S H, Rohrmann G F. 1999. Identification of additional genes that influence baculovirus late gene expression. Virology, 255: 9–19.

    Article  PubMed  CAS  Google Scholar 

  39. Li Y, Miller L K. 1995. Properties of a baculovirus mutant defective in the protein phosphatase gene. J Virol, 69: 4533–4537.

    PubMed  CAS  Google Scholar 

  40. Lu A, Carstens E B. 1991. Nucleotide sequence of a gene essential for viral DNA replication in the baculovirus Autographa californica nuclear polyhedrosis virus. Virology, 181: 336–347.

    Article  PubMed  CAS  Google Scholar 

  41. Lu A, Miller L K. 1994. Identification of three late expression factor genes within the 33.8-to 43.4-map-unit region of Autographa californica nuclear polyhedrosis virus. J Virol, 68: 6710–6718.

    PubMed  CAS  Google Scholar 

  42. Lu A, Miller L K. 1995. The roles of eighteen baculovirus late expression factor genes in transcription and DNA replication. J Virol, 69: 975–982.

    PubMed  CAS  Google Scholar 

  43. Mans R M W, Knebel-Mörsdorf D. 1999. Mitochondrial DNA acts as a potential promoter of the baculovirus RNA polymerase. Biol Chem, 380: 579–583.

    Article  PubMed  CAS  Google Scholar 

  44. Martins A, Shuman S. 2002. The domain of mammalian capping enzyme can be inverted and baculovirus phosphatase can function in cap formation in vivo. Virology, 304: 167–175.

    Article  PubMed  CAS  Google Scholar 

  45. Martins A, Shuman S. 2001. Mutational analysis of baculovirus capping enzyme Lef4 delineates an autonomous triphosphatase domain and structural determinants of divalent cation specificity. J Biol Chem, 276: 45522–45529.

    Article  PubMed  CAS  Google Scholar 

  46. McLachlin J R, Miller L K. 1994. Identification and characterization of vlf-1, a baculovirus gene involved in very late gene expression. J Virol, 68: 7746–7756.

    PubMed  CAS  Google Scholar 

  47. Miller L K, Trimarchi R E, Browne D, et al. 1983. A temperature sensitive mutant of the baculovirus Autographa californica nuclear polyhedrosis virus defective in an early function required for further gene expression. Virology, 126: 376–380.

    Article  CAS  PubMed  Google Scholar 

  48. Mooney R A, Landick R. 1999. RNA polymerase unveiled. Cell, 98:687–690.

    Article  PubMed  CAS  Google Scholar 

  49. Mustaev A, Kashlev M, Zaychikov E, et al. 1993. Active center rearrangement in RNA polymerase initiation complex. J Biol Chem, 268: 19185–19187.

    PubMed  CAS  Google Scholar 

  50. Mustaev A, Kozlov M, Markovtsov V, et al. 1997. Modular organization of the catalytic center of RNA polymerase. Proc Natl Acad Sci USA, 94: 6641–6645.

    Article  PubMed  CAS  Google Scholar 

  51. Naryshkina T, Rogulja D, Golub L, et al. 2000. Inter-and intrasubunit interactions during the formation of RNA polymerase assembly intermediate. J Biol Chem, 275: 31183–31190.

    Article  PubMed  CAS  Google Scholar 

  52. Partington S, Yu H, Lu A, et al. 1990. Isolation of temperature sensitive mutants of Autographa californica nuclear polyhedrosis virus phenotype characterization of baculovirus mutants defective in very late gene expression. Virology, 175: 91–102.

    Article  PubMed  CAS  Google Scholar 

  53. Passarelli A L, Miller L K. 1993. Identification of genes encoding late expression factors located between 56.0 and 65.4 map units of the Autographa californica nuclear polyhedrosis virus genome. Virology, 197: 704–714.

    Article  PubMed  CAS  Google Scholar 

  54. Passarelli A L, Miller L K. 1993. Three baculovirus genes involved in late and very late gene expression: ie-1, ie-n, and lef-2. J Virol, 67: 2149–2158.

    PubMed  CAS  Google Scholar 

  55. Passarelli A L, Todd J W, Miller L K. 1994. A baculovirus gene involved in late gene expression predicts a large polypeptide with a conserved motif of RNA polymerases. J Virol, 68: 4673–4678.

    PubMed  CAS  Google Scholar 

  56. Phatnani H P, Greenleaf A L. 2006. Phosphorylation and functions of the RNA polymerase II CTD. Genes & Development, 20: 2922–2936.

    Article  CAS  Google Scholar 

  57. Potter K N, Miller L K. 1980. Correlating genetic mutations of a baculovirus with the physical map of the DNA genome. In: Animal virus genetics: ICN-UCLA Symposia on Molecular and Cellular Biology (Fields B, Jaenisch R, Fox C. F. ed.). New York: Academic Press, p71–80.

    Google Scholar 

  58. Rapp J C, Wilson J A, Miller L K. 1998. Nineteen baculovirus open reading frames, including LEF-12, support late gene expression. J Virol, 72: 10197–10206.

    PubMed  CAS  Google Scholar 

  59. Ribeiro B, Hutchinson K, Miller L K. 1994. A mutant baculovirus with a temperature sensitive IE-1 trans-regulatory protein. J Virol, 68: 1075–1084.

    PubMed  CAS  Google Scholar 

  60. Sehrawat S, Gopinathan K P. 2002. Temporal expression profile of late gene expression factor 4 from Bombyx mori nucleopolyhedrovirus. Gene, 294: 67–75.

    Article  PubMed  CAS  Google Scholar 

  61. Sehrawat S, Srinivasan N, Gopinathan K P. 2002. Functional characterization and structural modeling of late expressin factor 4 from Bombyx mori nucleopolyhedrovirus. Biochem J, 368: 159–169.

    Article  PubMed  CAS  Google Scholar 

  62. Shikata M, Sano Y, Hashimoto Y, et al. 1998. Isolation and characterization of a temperature-sensitive mutant of Bombyx mori nucleopolyhedrovirus for a putative RNA polymerase gene. J Gen Virol, 79: 2071–2078.

    PubMed  CAS  Google Scholar 

  63. Sonntag K-C, Darai G. 1996. Evolution of viral DNA-dependent RNA polymerases. Virus Genes, 11: 271–284.

    Article  Google Scholar 

  64. Sousa R, Chung Y J, Rose J P, et al. 1993. Crystal structure of bacteriophage T7 RNA polymerase at 3.3 Å resolution. Nature, 364: 593–599.

    Article  PubMed  CAS  Google Scholar 

  65. Steinberg T H, Mathews D E, Durbin R D, et al. 1990. Tagetitoxin: a new inhibitor of eukaryotic transcription by RNA polymerase III. J Biol Chem, 265: 499–505.

    PubMed  CAS  Google Scholar 

  66. Stiller J W, Duffield E C S, Hall B D. 1998. Amitochondriate amoebae and the evolution of DNA-dependent RNA polymerase II. Proc Natl Acad Sci USA, 95: 11769–11774.

    Article  PubMed  CAS  Google Scholar 

  67. Stiller J W, McConaughy B L, Hall B D. 2000. Evolutionary complementation for polymerase II CTD function. Yeast, 16: 57–64.

    Article  PubMed  CAS  Google Scholar 

  68. Sweetser D, Nonet M, Young R A. 1987. Prokaryotic and eukaryotic RNA polymerases have homologous core subunits. Proc Natl Acad Sci USA, 84: 1192–1196.

    Article  PubMed  CAS  Google Scholar 

  69. Takagi T, Taylor G S, Kusakabe T, et al. 1998. A protein tyrosine phasphatase-like protein from baculovirus has RNA 5′ triphosphatase and diphosphatase activities. Proc Natl Acad Sci USA, 95: 9808–9812.

    Article  PubMed  CAS  Google Scholar 

  70. Titterington J S, Nun T K, Passarelli A L. 2003. Functional dissection of the baculovirus late expression factor-8: Sequence requirements for late gene promoter activation. J Gen Virol, 84: 1817–1826.

    Article  PubMed  CAS  Google Scholar 

  71. Todd J W, Passarelli A L, Lu A, et al. 1996. Factors regulating baculovirus late and very late gene expression in transient-expression assays. J Virol, 70: 2307–2317.

    PubMed  CAS  Google Scholar 

  72. Todd J W, Passarelli A L, Miller L K. 1995. Eighteen baculovirus genes, including lef-11, p35, 39K, and p47, support late gene expression. J Virol, 69: 968–974.

    PubMed  CAS  Google Scholar 

  73. Vanarsdall A L, Okano K, Rohrmann G F. 2006. Characterization of the role of very late expression factor 1 in baculovirus capsid structure and DNA processing. J Virol, 80: 1724–1733.

    Article  PubMed  CAS  Google Scholar 

  74. Woychik N A, Liao S-M, Kolodziej P A, et al. 1990. Subunits shared by eukaryotic nuclear RNA polymerases. Genes & Development, 4: 313–323.

    Article  CAS  Google Scholar 

  75. Wu X, Guarino L A. 2003. Autographa californica nucleopolyhedrovirus orf69 encodes an RNA cap (nucleoside-2′-O)-methyltransferase. J Virol, 77: 3430–3440.

    Article  PubMed  CAS  Google Scholar 

  76. Xu B, Yoo S, Guarino L A. 1995. Differential transcription of baculovirus late and very late promoters: fractionation of nuclear extracts by phosphocellulose chromatography. J Virol, 69: 2912–2917.

    PubMed  CAS  Google Scholar 

  77. Yang C L, Stetler D A, Weaver R. F. 1991. Structural comparison of the Autographa californica nuclear polyhedrosis virus-induced RNA polymerase and the 3 nuclear RNA polymerases from the host, Spodoptera frugiperda. Virus Res, 20: 251–264.

    Article  PubMed  CAS  Google Scholar 

  78. Zaychikov E, Martin E, Denissova L, et al. 1996. Mapping of catalyltic residues in the RNA polymerase active center. Science, 273: 107–109.

    Article  PubMed  CAS  Google Scholar 

  79. Zhang G, Campbell E A, Minakhin L, et al. 1999. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell, 98: 811–824.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lorena Passarelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passarelli, A.L. Baculovirus RNA polymerase: Activities, composition, and evolution. Virol. Sin. 22, 94–107 (2007). https://doi.org/10.1007/s12250-007-0011-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-007-0011-6

CLC number

Key words

Navigation