Skip to main content

Advertisement

Log in

Influence of Dosage Form, Formulation, and Delivery Device on Olfactory Deposition and Clearance: Enhancement of Nose-to-CNS Uptake

  • Review Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Nose-to-central nervous system (CNS) drug delivery has shown promising results in preclinical efficacy models and exploratory human clinical trials. There are two primary limitations to direct CNS uptake of drugs following intranasal administration. Firstly, non-specific deposition in the nasal cavity leads to systemic absorption instead of CNS absorption, altering CNS bioavailability. Secondly, mucociliary clearance affects the residence time of the formulation at the site of deposition. In vivo results have demonstrated that therapeutic agents targeted to the olfactory region can translocate directly into the CNS via neuronal uptake. In this review, liquid and solid formulations are investigated for their effect on olfactory deposition and clearance based on their physical properties. The influence of delivery device and mode of administration is also reviewed. Case examples are provided to illustrate the importance of optimal deposition in olfactory region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Illum L. Nasal drug delivery—possibilities, problems and solutions. J Control Release. 2003;87:187–98.

    Article  CAS  PubMed  Google Scholar 

  2. Graff CL, Pollack GM. Nasal drug administration: potential for targeted central nervous system delivery. J Pharm Sci. 2005;94:1187–95.

    Article  CAS  PubMed  Google Scholar 

  3. Vyas TK et al. Intranasal drug delivery for brain targeting. Curr Drug Del. 2005;2:165–75.

    Article  CAS  Google Scholar 

  4. Dhuria SV, Hanson LH, Frey WH. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99:1654–73.

    CAS  PubMed  Google Scholar 

  5. Mittal D et al. Insights into direct nose to brain delivery: current status and future perspective. Drug Del. 2014;21:75–86.

    Article  CAS  Google Scholar 

  6. Brenneman KA, Wong BA, et al. Direct olfactory transport of inhaled manganese 54MnCl2 to the rat brain: Toxicokinetic investigations in a unilateral nasal occlusion model. Toxicol Appl Pharmacol. 2000;169:238–48.

    Article  CAS  PubMed  Google Scholar 

  7. Henriksson J, Tallkvist J, Tjalve H. Uptake of nickel into the brain via olfactory neurons in rats. Toxicol Lett. 1997;91:153–62.

    Article  CAS  PubMed  Google Scholar 

  8. Wang F, Jiang XG, Lu W. Intranasal delivery of methotrexate to the brain in rats bypassing the blood–brain barrier. Drug Deliv Technol. 2004;4:48–55.

    Google Scholar 

  9. Sakane T et al. Transnasal delivery of 5-fluorouracil to the brain in the rat. J Drug Target. 1999;7:233–40.

    Article  CAS  PubMed  Google Scholar 

  10. Chow HS, Chen Z, Matsuura GT. Direct transport of cocaine from the nasal cavity to the brain following intranasal cocaine administration in rats. J Pharm Sci. 1999;88:754–8.

    Article  CAS  PubMed  Google Scholar 

  11. Dahlin M et al. Transfer of dopamine in the olfactory pathway following nasal administration in mice. Pharm Res. 2000;17:737–42.

    Article  CAS  PubMed  Google Scholar 

  12. Astic L, Saucier D, et al. The CVS strain of rabies virus as trans-neuronal tracer in the olfactory system of mice. Brain Res. 1993;619:146–56.

    Article  CAS  PubMed  Google Scholar 

  13. Perlman S, Sun N, Barnett EM. Spread of MHV-JHM from nasal cavity to white matter of spinal cord: Transneuronal movement and involvement of astrocytes. Adv Exp Med Biol. 1995;380:73–8.

    Article  CAS  PubMed  Google Scholar 

  14. Frey WH II (1991) Neurologic agents for nasal administration the brain. World Intellectual Property Organization. PCT priority date 5.12.89, EP0504263 B1.

  15. Went GT, Fultz, TJ. 2006;US20060252788A1.

  16. Hussain AA, Dittert, LW, Traboulsi, A. 2002;US20026369058.

  17. Meyerson LR, Went GT, Fultz TJ. 2005;US20050245617A1.

  18. Tao T, Gu, Y, Yue P. 2005;CN1621039.

  19. Ambikanandan M, Tushar KV. 2005;1125/MUM/2004.

  20. Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64:614–28.

    Article  CAS  PubMed  Google Scholar 

  21. Illum L. Is nose‐to‐brain transport of drugs in man a reality? J Pharm Pharmacol. 2004;56:3–17.

    Article  CAS  PubMed  Google Scholar 

  22. Merkus FWHM, van den Berg MP. Can Nasal Drug Delivery Bypass the Blood–brain Barrier? Drugs R D. 2007;8:133–44.

    Article  CAS  PubMed  Google Scholar 

  23. Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective—a review. Drug Deliv Transl Res. 2013;3:42–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kublik H, Vidgren MT. Nasal delivery systems and their effect on deposition and absorption. Adv Drug Deliv Rev. 1998;29:157–77.

    Article  CAS  PubMed  Google Scholar 

  25. Ugwoke MI, Agu RU, et al. Nasal mucoadhesive drug delivery: background, applications, trends and future perspectives. Adv Drug Deliv Rev. 2005;57:1640–65.

    Article  CAS  PubMed  Google Scholar 

  26. Pujara CP, Shao Z, et al. Effects of formulation variables on nasal epithelial cell integrity: Biochemical evaluations. Int J Pharm. 1995;114:197–203.

    Article  CAS  Google Scholar 

  27. Adamek GD, Gesteland RC, et al. Transduction physiology of olfactory receptor cilia. Brain Res. 1984;310:87–97.

    Article  CAS  PubMed  Google Scholar 

  28. Reese T. Olfactory cilia in the frog. J Cell Biol. 1965;25:209–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Proctor DF, Andersen I. Nasal mucociliary function in normal man. Rhinology. 1976;14:11–7.

    CAS  PubMed  Google Scholar 

  30. Hilding A. Phagocytosis, mucous flow, and ciliary action. Arch Environ Health. 1963;6:61–73.

    Article  CAS  PubMed  Google Scholar 

  31. Kandimalla KK, Donovan MD. Localization and differential activity of P-glycoprotein in the bovine olfactory and nasal respiratory mucosae. Pharm Res. 2005;25:1121–8.

    Article  Google Scholar 

  32. Graff CL, Pollack GM. Functional evidence for P-glycoprotein at the nose-brain barrier. Pharm Res. 2005;22:86–93.

    Article  CAS  PubMed  Google Scholar 

  33. Durand M, Rusch P, et al. Preliminary study of the deposition of aerosol in the maxillary sinuses using a plastinated model. J Aerosol Med. 2001;14:83–93.

    Article  CAS  PubMed  Google Scholar 

  34. Minn A, Leclerc S, et al. Drug transport into the mammalian brain: the nasal pathway and its specific metabolic barrier. J Drug Target. 2002;10:285–96.

    Article  CAS  PubMed  Google Scholar 

  35. Schlesinger RB. Deposition and clearance of inhaled particles. In: MacClellan RO, Henderson RF, editors. Concepts in inhalation toxicology. Washington D.C.: Taylor and Francis; 1995. p. 191–224.

    Google Scholar 

  36. Stuart BO. Deposition and clearance of inhaled particles. Environ Health Perspect. 1976;16:41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lippmann M, Yeates D, Albert R. Deposition, retention, and clearance of inhaled particles. Br J Ind Med. 1980;37:337–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Gonda I, Gipps E. Model of disposition of drugs administered into the human nasal cavity. Pharm Res. 1990;7:69–75.

    Article  CAS  PubMed  Google Scholar 

  39. Kimbell J, Godo M, et al. Computer simulation of inspiratory airflow in all regions of the F344 rat nasal passages. Toxicol Appl Pharmacol. 1997;145:388–98.

    Article  CAS  PubMed  Google Scholar 

  40. FDA 2003. US FDA draft guidance for industry. Bioavailability and bioequivalence studies for nasal aerosols and nasal sprays. Bethesda. http://www.fda.gov/cder/guidance/index.htm. Accessed January 2015

  41. Heyder J, Gebhart J, et al. Deposition of particles in the human respiratory tract in the size range 0.005–15 μm. J Aerosol Sci. 1986;17:811–25.

    Article  Google Scholar 

  42. Yu C, Diu C. Total and regional deposition of inhaled aerosols in humans. J Aerosol Sci. 1983;14:599–609.

    Article  Google Scholar 

  43. Thomas RL, Raabe OG. Regional deposition of inhaled 137Cs-labeled monodisperse and polydisperse aluminosilicate aerosols in Syrian hamsters. Am Ind Hyg Assoc J. 1978;39:1009–18.

    Article  CAS  PubMed  Google Scholar 

  44. Garcia GJ, Kimbell JS. Deposition of inhaled nanoparticles in the rat nasal passages: Dose to the olfactory region. Inhal Toxicol. 2009;21:1165–75.

    Article  PubMed  Google Scholar 

  45. Marttin E, Schipper NGM, et al. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev. 1998;29:13–38.

    Article  CAS  PubMed  Google Scholar 

  46. Schipper NGM, Verhoef JC, Merkus FWHM. The nasal mucociliary clearance: relevance to nasal drug delivery. Pharm Res. 1991;8:807–14.

    Article  CAS  PubMed  Google Scholar 

  47. Charlton S, Jones N, et al. Distribution and clearance of bioadhesive formulations from the olfactory region in man: Effect of polymer type and nasal delivery device. Eur J Pharm Sci. 2007;30:295–302.

    Article  CAS  PubMed  Google Scholar 

  48. Gavini E, Rassu G, et al. Mucoadhesive microspheres for nasal administration of an antiemetic drug, metoclopramide: in‐vitro/ex‐vivo studies. J Pharm Pharmacol. 2005;57:287–94.

    Article  CAS  PubMed  Google Scholar 

  49. Bertram U, Bodmeier R. In situ gelling, bioadhesive nasal inserts for extended drug delivery: in vitro characterization of a new nasal dosage form. Eur J Pharm Sci. 2006;27:62–71.

    Article  CAS  PubMed  Google Scholar 

  50. Majithiya RJ, Ghosh PK, et al. Thermoreversible-mucoadhesive gel for nasal delivery of sumatriptan. AAPS PharmSciTech. 2006;7:80–6.

    Article  Google Scholar 

  51. Hardy J, Lee S, Wilson C. Intranasal drug delivery by spray and drops. J Pharm Pharmacol. 1985;37:294–7.

    Article  CAS  PubMed  Google Scholar 

  52. Soane R, Hinchcliffe M, et al. Clearance characteristics of chitosan based formulations in the sheep nasal cavity. Int J Pharm. 2001;217:183–91.

    Article  CAS  PubMed  Google Scholar 

  53. van de Donk HJ, Muller-Plantema IP, et al. The effects of preservatives on the ciliary beat frequency of chicken embryo tracheas. Rhinology. 1980;18:119–33.

    PubMed  Google Scholar 

  54. Batts A, Marriott C, et al. The effect of some preservatives used in nasal preparations on mucociliary clearance. J Pharm Pharmacol. 1989;41:156–9.

    Article  CAS  PubMed  Google Scholar 

  55. Kubba H, Spinou E, Robertson A. The effect of head position on the distribution of drops within the nose. Am J Rhinol. 2000;14:83–6.

    Article  CAS  PubMed  Google Scholar 

  56. Morén F, Björnek K, et al. A comparative distribution study of two procedures for administration of nose drops. Acta Otolaryngol. 1988;106:286–90.

    Article  PubMed  Google Scholar 

  57. Merkus P, Ebbens FA, et al. Influence of anatomy and head position on intranasal drug deposition. Eur Archotorhinolaryngol. 2006;236:827–32.

    Article  Google Scholar 

  58. Aoki FY, Crowley JC. Distribution and removal of human serum albumin-technetium 99m instilled intranasally. Br J Clin Pharmacol. 1976;3:869–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Harris A, Hedner P, Vilhardt H. Nasal administration of desmopressin by spray and drops. J Pharm Pharmacol. 1987;39:932–4.

    Article  CAS  PubMed  Google Scholar 

  60. Homer J, Maughan J, Burniston M. A quantitative analysis of the intranasal delivery of topical nasal drugs to the middle meatus: spray versus drop administration. J Laryngol Otol. 2002;116:10–3.

    CAS  PubMed  Google Scholar 

  61. Djupesland PG, Skretting A, et al. Breath actuated device improves delivery to target sites beyond the nasal valve. Laryngoscope. 2006;116:466–72.

    Article  PubMed  Google Scholar 

  62. Hoekman JD, Ho JY. Effects of localized hydrophilic mannitol and hydrophobic nelfinavir administration targeted to olfactory epithelium on brain distribution. AAPS PharmSciTech. 2011;12:534–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Vaka SRK, Sammeta SM, et al. Delivery of nerve growth factor to brain via intranasal administration and enhancement of brain uptake. J Pharm Sci. 2009;98:3640–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Ved PM, Kim K. Poly (ethylene oxide/propylene oxide) copolymer thermo-reversible gelling system for the enhancement of intranasal zidovudine delivery to the brain. Int J Pharm. 2011;411:1–9.

    Article  CAS  PubMed  Google Scholar 

  65. Davis SS, Illum L. Absorption enhancers for nasal drug delivery. Clin Pharmacokinet. 2003;42:1107–28.

    Article  CAS  PubMed  Google Scholar 

  66. Baker H, Spencer RF. Transneuronal transport of peroxidase-conjugated wheat germ agglutinin (WGA-HRP) from the olfactory epithelium to the brain of the adult rat. Exp Brain Res. 1986;63:461–73.

    Article  CAS  PubMed  Google Scholar 

  67. Bacon R, Newman S, et al. Pulmonary and nasal deposition of ketorolac tromethamine solution (SPRIX) following intranasal administration. Int J Pharm. 2012;431:39–44.

    Article  CAS  PubMed  Google Scholar 

  68. Suman JD, Laube BL, et al. Validity of in vitro tests on aqueous spray pumps as surrogates for nasal deposition. Pharm Res. 2002;19:1–6.

    Article  CAS  PubMed  Google Scholar 

  69. Foo MY, Cheng YS, et al. The influence of spray properties on intranasal deposition. J Aerosol Med. 2007;20:495–508.

    Article  CAS  PubMed  Google Scholar 

  70. Kimbell JS, Segal RA, et al. Characterization of deposition from nasal spray devices using a computational fluid dynamics model of the human nasal passages. J Aerosol Med. 2007;20:59–74.

    Article  PubMed  Google Scholar 

  71. Tsuneji N, Yuji N, et al. Powder dosage form of insulin for nasal administration. J Control Release. 1984;1:15–22.

    Article  Google Scholar 

  72. Schipper NGM, Romeijn SG, et al. Nasal insulin delivery with dimethyl-β-cyclodextrin as an absorption enhancer in rabbits: powder more effective than liquid formulations. Pharm Res. 1993;10:682–6.

    Article  CAS  PubMed  Google Scholar 

  73. Pontiroli A, Alberetto M, et al. Nasal administration of glucagon and human calcitonin to healthy subjects: a comparison of powders and spray solutions and of different enhancing agents. Eur J Clin Pharmacol. 1989;37:427–30.

    Article  CAS  PubMed  Google Scholar 

  74. Marttin E, Romeijn SG, et al. Nasal absorption of dihydroergotamine from liquid and powder formulations in rabbits. J Pharm Sci. 1997;86:802–7.

    Article  CAS  PubMed  Google Scholar 

  75. Colombo G, Lorenzini L, et al. Brain distribution of ribavirin after intranasal administration. Antivir Res. 2011;92:408–14.

    Article  CAS  PubMed  Google Scholar 

  76. Illum L, Jørgensen H, et al. Bioadhesive microspheres as a potential nasal drug delivery system. Int J Pharm. 1987;39:189–99.

    Article  CAS  Google Scholar 

  77. Djupesland PG, Skretting A, et al. Bi-directional nasal delivery of aerosols can prevent lung deposition. J Aerosol Med. 2004;17:249–59.

    Article  CAS  PubMed  Google Scholar 

  78. Djupesland PG, Skretting A, Winderen M, Holand T. Breath actuated device improves delivery to target sites beyond the nasal valve. Laryngoscope. 2006;116:466–72.

    Article  PubMed  Google Scholar 

  79. Djupesland PG, Dočekal P. Intranasal sumatriptan powder delivered by a novel breath-actuated bi-directional device for the acute treatment of migraine: A randomised, placebo-controlled study. Cephalalgia. 2010;30:933–42.

    CAS  PubMed  Google Scholar 

  80. Hansen F, Djupesland PG, Fokkens W. Preliminary efficacy of fluticasone delivered by a novel device in recalcitrant chronic rhinosinusitis. Rhinology. 2010;48:292.

    CAS  PubMed  Google Scholar 

  81. Hughes B, Allen D, et al. Effect of delivery devices on nasal deposition and mucociliary clearance in rhesus monkeys. Aerosol Sci Technol. 1993;18:241–9.

    Article  CAS  Google Scholar 

  82. Pringels E, Callens C, et al. Influence of deposition and spray pattern of nasal powders on insulin bioavailability. Int J Pharm. 2006;310:1–7.

    Article  CAS  PubMed  Google Scholar 

  83. Thorsson L, Newman S, et al. Nasal distribution of budesonide inhaled via a powder inhaler. Rhinology. 1993;31:7.

    CAS  PubMed  Google Scholar 

  84. Djupesland PG, Skretting A. Nasal Deposition and Clearance in Man: Comparison of a Bidirectional Powder Device and a Traditional Liquid Spray Pump. J Aerosol Med Pulm Del. 2012;25:280–9.

    Article  CAS  Google Scholar 

  85. Fransén N, Bredenberg S, Björk E. Clinical study shows improved absorption of desmopressin with novel formulation. Pharm Res. 2009;26:1618–25.

    Article  PubMed  Google Scholar 

  86. Tsuneji N et al. Powder dosage form of insulin for nasal administration. J Control Release. 1984;1:15–22.

    Article  Google Scholar 

  87. Krauland AH, Leitner VM, et al. In vivo evaluation of a nasal insulin delivery system based on thiolated chitosan. J Pharm Sci. 2006;95:2463–72.

    Article  CAS  PubMed  Google Scholar 

  88. Gavini E, Rassu G, et al. Influence of polymeric microcarriers on the in vivo intranasal uptake of an anti-migraine drug for brain targeting. Eur J Pharm Biopharm. 2013;83:174–83.

    Article  CAS  PubMed  Google Scholar 

  89. Dalpiaz A, Gavini E, et al. Brain uptake of an anti‐ischemic agent by nasal administration of microparticles. J Pharm Sci. 2008;98:4889–903.

    Article  Google Scholar 

  90. Tafaghodi M, Tabassi SAS, et al. Evaluation of the clearance characteristics of various microspheres in the human nose by gamma-scintigraphy. Int J Pharm. 2004;2880:125–35.

    Article  Google Scholar 

  91. Ascentiis A, Bettini R, et al. Delivery of nasal powders of β-cyclodextrin by insufflation. Pharm Res. 1996;13:734–8.

    Article  PubMed  Google Scholar 

  92. Kaialy W, Martin GP, et al. Characterisation and deposition studies of recrystallised lactose from binary mixtures of ethanol/butanol for improved drug delivery from dry powder inhalers. AAPS J. 2011;13:30–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Sacchetti C, Artusi M, et al. Caffeine microparticles for nasal administration obtained by spray drying. Int J Pharm. 2002;242:335–9.

    Article  CAS  PubMed  Google Scholar 

  94. Russo P, Sacchetti C, et al. Primary microparticles and agglomerates of morphine for nasal insufflation. J Pharm Sci. 2006;95:2553–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. D. Wildfong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasa, D.M., O’Donnell, L.A. & Wildfong, P.L.D. Influence of Dosage Form, Formulation, and Delivery Device on Olfactory Deposition and Clearance: Enhancement of Nose-to-CNS Uptake. J Pharm Innov 10, 200–210 (2015). https://doi.org/10.1007/s12247-015-9222-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-015-9222-9

Keywords

Navigation