Skip to main content
Log in

Modeling the Parameters Involved in Preparation of PLA Nanoparticles Carrying Hydrophobic Drug Molecules Using Artificial Neural Networks

  • Research Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Artificial neural networks (ANNs) are used to optimize a formulation of poly(lactic acid) (PLA) nanoparticles containing hydrophobic drug molecules through a study of the critical parameters affecting nanoparticle size.

Methods

We evaluate the effect of input variables, including concentrations of PLA and Tween 80, amplitude of ultrasound wave, and sonication time on the formation of PLA nanoparticles, which were prepared using a solvent evaporation method. Budesonide was used as a model hydrophobic drug. An ANN model was created using training data and evaluated for prediction capability using validation data.

Results

The ANN model demonstrated that reducing PLA concentration and increasing Tween 80 concentration provided optimum conditions for the preparation of small particle size. Additionally, the simultaneous use of high sonication time and amplitude has an adverse effect on particle diameter.

Conclusion

By defining the effects of each parameter on the size of PLA nanoparticles, this study demonstrated the feasibility of using an ANN model to optimize the conditions for achieving minimum particle size in hydrophobic drug-loaded PLA nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bodmeier R, Chen H. Indomethacin polymeric nanosuspensions prepared by microfluidization. J Control Release. 1990;12:223–33.

    Article  CAS  Google Scholar 

  2. Gurny R, Peppas NA, Harrington DD, Banker GS. Development of biodegradable and injectable lattices for controlled release of potent drugs. Drug Dev Ind Pharm. 1981;7:1–25.

    Article  CAS  Google Scholar 

  3. Landry FB, Bazile DV, Spenlehauer G, Veillard M, Kreuter J. Influence of coating agents on the degradation of poly(d, l-lactic acid) nanoparticles in model digestive fluids (USP XXII). STP Pharma Sci. 1996;6:195–202.

    CAS  Google Scholar 

  4. Uedat M, Iwarat A, Kreuter J. Influence of the preparation methods on the drug release behaviour of loperamide-loaded nanoparticles. J Microencap. 1998;15:361–72.

    Article  Google Scholar 

  5. Tice TR, Gilley RM. Preparation of injectable controlled-release microcapsules by solvent-evaporation process. J Control Release. 1985;2:343–52.

    Article  CAS  Google Scholar 

  6. Bodmeier R, Maincent P. Polymeric dispersions as drug carriers. New York: Dekker; 1996.

    Google Scholar 

  7. Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidom GL. The mechanism of uptake of biodegradable microparticles in caco-2 cells is size dependent. Pharm Res. 1997;14:1568–73.

    Article  PubMed  CAS  Google Scholar 

  8. Chorny M, Fishbein I, Danenberg HD, Golomb GJ. Lipophilic drug loaded nanospheres prepared by nanoprecipitation. Effect of formulation variables on size, drug recovery and release kinetics. J Control Release. 2002;83:389–400.

    Article  PubMed  CAS  Google Scholar 

  9. Krause HJ, Schwarz A, Rohdewald P. Polylactic acid nanoparticles, a colloidal drug delivery system for lipophilic drugs. Int J Pharm. 1985;27:145–55.

    Article  CAS  Google Scholar 

  10. Hamoudeh M, Al Faraj A, Canet-Soulas E, Bessueille F, L´eonard D, Fessi H. Elaboration of PLLA-based superparamagnetic nanoparticles: characterization, magnetic behaviour study and in vitro relaxivity evaluation. Int J Pharm. 2007;338:248–57.

    Article  PubMed  CAS  Google Scholar 

  11. Jaiswal J, Gupta SK, Kreuter J. Preparation of biodegradable cyclosporine nanoparticles by high-pressure emulsification-solvent evaporation process. J Control Release. 2004;96:169–78.

    Article  PubMed  CAS  Google Scholar 

  12. Gorner T, Gref R, Michenot D, Sommer F, Tran MN, Dellacherie E. Lidocaine-loaded biodegradable nanospheres. I. Optimization of the drug incorporation into the polymer matrix. J Control Release. 1999;57:259–68.

    Article  PubMed  CAS  Google Scholar 

  13. Leo E, Forni F, Bernabei MT. Surface drug removal from ibuprofen-loaded PLA microspheres. Int J Pharm. 2000;196:1–9.

    Article  PubMed  CAS  Google Scholar 

  14. Govender T, Riley T, Ehtezazi T, Garnett MC, Stolnikv S. Defining the drug incorporation properties of PLA–PEG nanoparticles. Int J Pharm. 2000;199:95–110.

    Article  PubMed  CAS  Google Scholar 

  15. Bourquin J, Schmidli H, van Hoogevest P, Leuenberger H. Comparison of artificial neural networks (ANN) with classical modelling techniques using different experimental designs and data from a galenical study on a solid dosage form. Eur J Pharm Sci. 1998;6:287–300.

    Article  PubMed  CAS  Google Scholar 

  16. Sathe PM, Venitz J. Comparison of neural network and multiple linear regression as dissolution predictors. Drug Dev Ind Pharm. 2003;29:349–55.

    Article  PubMed  CAS  Google Scholar 

  17. Amani A, Mohammadyani D. Artificial neural networks: applications in nanotechnology. In: Leung C, Hui P, editors. Artificial neural networks—application. Rijeka: InTechOpen; 2011.

    Google Scholar 

  18. Rowe RC, Roberts RJ. Intelligent software for product formulation. London: Taylor & Francis; 1998.

    Google Scholar 

  19. Amani A, York P, Chrystyn H, Clarkand BJ, Do DQ. Determination of factors controlling the particle size in nanoemulsions using artificial neural networks. Eur J Pharm Sci. 2008;35:42–51.

    Article  PubMed  CAS  Google Scholar 

  20. Ali HS, Blagden N, York P, Amani A, Brook T. Artificial neural networks modelling the prednisolone nanoprecipitation in microfluidic reactors. Eur J Pharm Sci. 2009;37:514–22.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang Z, Friedrich K. Artificial neural networks applied to polymer composites: a review. Compos Sci Tech. 2003;63:2029–44.

    Article  CAS  Google Scholar 

  22. Lindenbaum M, Markovitch S, Rusakov D. Selective sampling for nearest neighbor classifiers. Mach Learn. 2004;54:125–52.

    Article  Google Scholar 

  23. Shao Q, Rowe RC, York P. Comparison of experimental data of neurofuzzy logic and neural networks in modeling experimental data of an immediate release tablet formulation. Eur J Pharm Sci. 2006;28:394–404.

    Article  PubMed  CAS  Google Scholar 

  24. Intelligensys Ltd. (2009) INForm v4 manual. http://www.intelligensys.co.uk/Products/Downloads/downeval.htm. Accessed 02 Aug 2010.

  25. Bourquin J, Schimidli H, Hoogevest PV, Leunberger H. Comparison of artificial neural networks (ANN) with classical modelling techniques using different experimental design and data from a galenical study on a solid dosage form. Eur J Pharm Sci. 1998;6:187–300.

    Article  Google Scholar 

  26. Bourquin J, Schimidli H, Hoogevest PV, Leunberger H. Advantages of artificial neural networks (ANN) as alternative modelling technique for data sets showing non-linear relationships using data from a galenical study on a solid dosage form. Eur J Pharm Sci. 1998;7:5–16.

    Article  PubMed  CAS  Google Scholar 

  27. Amani A, York P, Chrystynand H, Clark BJ. Factors affecting the stability of nanoemulsions use of artificial neural networks. Pharm Res. 2010;27:37–45.

    Article  PubMed  CAS  Google Scholar 

  28. Palla BJ, Shah DO. Stabilization of high ionic strength slurries using surfactant mixtures: molecular factors that determine optimal stability. J Colloid Interface Sci. 2002;256:143–52.

    Article  CAS  Google Scholar 

  29. Birnbaum DT, Kosmala JD, Brannon-Peppas L. Optimization of preparation techniques for poly(lactic acid-co-glycolic acid) nanoparticles. J Nanoparticle Res. 2000;2:173–81.

    Article  CAS  Google Scholar 

  30. Garti N. A new approach to improved stability and controlled release in double emulsions, by the use of graft-comb polymeric amphiphiles. Acta Polym. 1998;49:606–16.

    Article  CAS  Google Scholar 

  31. Zweers MLT, Grijpma DW, Engbers GHM, Feijen J. The preparation of monodisperse biodegradable polyester nanoparticles with a controlled size. J Biomed Mater Res. 2003;66:559–66.

    Article  Google Scholar 

  32. Gro¨nroons A, Pirkonen P, Heikkinen J, Ihalainen J, Mursunen H, Sekki H. Ultrasonic depolymerization of aqueous polyvinyl alcohol. Ultrasonics Sonochem. 2001;8:259–64.

    Article  Google Scholar 

  33. Mainardes RM, Evangelista RC. PLGA nanoparticles containing praziquantel: effect of formulation variables. Int J Pharm. 2005;290:137–44.

    Article  PubMed  CAS  Google Scholar 

  34. Galindo-Rodriguez S, Allémann E, Fessi H, Doelker E. Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm Res. 2004;21:1428–39.

    Article  PubMed  CAS  Google Scholar 

  35. Chen RH, Chang JR, Shyur JS. Effect of shear conditions and storage in acidic solutions on molecular weight and polydispersity of treated chitosans. J Fish Soc Taiwan. 1998;25:219–29.

    CAS  Google Scholar 

  36. Gan Q, Wang T, Cochrane C, McCrron P. Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloid Surf B: Biointerface. 2005;44:65–73.

    Article  CAS  Google Scholar 

  37. Tsai ML, Bai SW, Chen RH. Cavitation effects versus stretch effects resulted in different size and polydispersity of ionotropic gelation chitosan–sodium tripolyphosphate nanoparticle. Carbohyd Polym. 2008;71:448–57.

    Article  CAS  Google Scholar 

  38. Tang ESK, Huang M, Lim LY. Ultrasonication of chitosan and chitosan nanoparticles. Int J Pharm. 2003;265:103–14.

    Article  PubMed  CAS  Google Scholar 

  39. Cao LY, Zhang CB, Huang JF. Influence of temperature, [Ca2+], Ca/P ratio and ultrasonic power on the crystallinity and morphology of hydroxyapatite nanoparticles prepared with a novel ultrasonic precipitation method. Mater Lett. 2005;59:1902–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Amani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amini, M.A., Faramarzi, M.A., Mohammadyani, D. et al. Modeling the Parameters Involved in Preparation of PLA Nanoparticles Carrying Hydrophobic Drug Molecules Using Artificial Neural Networks. J Pharm Innov 8, 111–120 (2013). https://doi.org/10.1007/s12247-013-9151-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-013-9151-4

Keywords

Navigation