Skip to main content
Log in

Determination of Figures of Merit for Near-Infrared, Raman and Powder X-ray Diffraction by Net Analyte Signal Analysis for a Compacted Amorphous Dispersion with Spiked Crystallinity

  • Research Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

With the growing interest in solubility enhancement of drugs via solid dispersion formulations, it is becoming more crucial to find appropriate analytical methods for detection of amorphous destabilization (i.e., crystallization). The objective of this work was to compare the performance of reflectance and transmittance near-infrared spectroscopy and Raman spectroscopy methods with powder X-ray diffraction. Specifically, the methods were compared on their ability to detect low concentrations (0–2 % w/w) of crystalline indomethacin-consolidated dispersions. Partial least squares regression and net analyte signal analyses were performed for the computation of figures of merit. Based on the calibration error statistics, all methods were suitable for the quantitative determination indomethacin content above 0.5 % (w/w) or 1 % (w/w) of drug content. However, the sensitivity, selectivity, limit of detection, and data collection time found for the near-infrared reflectance measurements provides the greatest promise for future online stability monitoring of consolidated dispersions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev. 1948;43(2):219–56.

    Article  CAS  Google Scholar 

  2. Kivelson D, et al. A thermodynamic theory of supercooled liquids. Physica A. 1995;219:27–38.

    Article  CAS  Google Scholar 

  3. Edigers MD, Angell CA, Nagel SR. Supercooled liquids and glasses. J Phys Chem. 1996;100:13200–12.

    Article  Google Scholar 

  4. Hancock B, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  5. Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev. 2001;48:27–2.

    Article  CAS  PubMed  Google Scholar 

  6. Hilden LR, Morris KR. Physics of amorphous solids. J Pharm Sci. 2004;93(1):3–12.

    Article  CAS  PubMed  Google Scholar 

  7. Bates S, et al. Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns. Pharm Res. 2006;23(10):2333–49.

    Article  CAS  PubMed  Google Scholar 

  8. Yoshioka M, Hancock BC, Zografi G. Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J Pharm Sci. 1994;83(12):1700–5.

    Article  CAS  PubMed  Google Scholar 

  9. Van den Mooter G, et al. Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur J Pharm Sci. 2001;12:261–9.

    Article  PubMed  Google Scholar 

  10. Sairam M, et al. Poly(methylmethacrylate)-poly(vinyl pyrrolidone) microspheres as drug delivery systems: indomethacin/cefadroxil loading and in vitro release study. J Appl Polym Sci. 2007;104:1860–5.

    Article  CAS  Google Scholar 

  11. Tantishaiyakul V, Kaewnopparat N, Ingkatawornwong S. Properties of solid dispersions of piroxicam in polyvinylpyrrolidone K-30. Int J Pharm. 1996;143:59–66.

    Article  CAS  Google Scholar 

  12. Lovrecich M, et al. Effect of ageing on the release of indomethacin from solid dispersions with Eudragits. Int J Pharm. 1996;131:247–55.

    Article  CAS  Google Scholar 

  13. Taylor LS, Zografi G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res. 1997;14:1691–8.

    Article  CAS  PubMed  Google Scholar 

  14. Taylor LS, Zografi G. Sugar–polymer hydrogen bond interactions in lyophilized amorphous mixtures. J Pharm Sci. 1998;87(12):1615–21.

    Article  CAS  PubMed  Google Scholar 

  15. Lu Q, Zografi G. Phase behavior of binary and ternary amorphous mixtures containing indomethacin, citric acid, and PVP. Pharm Res. 1998;15(8):1202–6.

    Article  CAS  PubMed  Google Scholar 

  16. Shamblin SL, Taylor LS, Zografi G. Mixing behavior of colyophilized binary systems. J Pharm Sci. 1998;87(6):695–701.

    Article  Google Scholar 

  17. Matsumoto T, Zografi G. Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl-acetate) in relation to indomethacin crystallization. Pharm Res. 1999;16(11):1722–8.

    Article  CAS  PubMed  Google Scholar 

  18. Khougaz K, Clas S-D. Crystallization inhibition in solid dispersions of MK-0591 and poly(vinylpyrrolidone) polymers. J Pharm Sci. 2000;89(10):1325–34.

    Article  CAS  PubMed  Google Scholar 

  19. Raghavan SL, et al. Crystallization of hydrocortisone acetate: influence of polymers. Int J Pharm. 2001;212:213–21.

    Article  CAS  PubMed  Google Scholar 

  20. Forster A, Hempenstall J, Rades T. Characterization of glass solutions of poorly water-soluble drugs produced by melt extrusion with hydrophilic amorphous polymers. J Pharm Pharmacol. 2001;53(3):303–15.

    Article  CAS  PubMed  Google Scholar 

  21. Weuts I, et al. Phase behaviour analysis of solid dispersions of loperamide and two structurally related compounds with the polymers PVP-K30 and PVP-VA64. Eur J Pharm Sci. 2004;22:375–85.

    Article  CAS  PubMed  Google Scholar 

  22. Miyazaki T, et al. Ability of polyvinylpyrrolidone and polyacrylic acid to inhibit the crystallization of amorphous acetaminophen. J Pharm Sci. 2004;93(11):2710–7.

    Article  CAS  PubMed  Google Scholar 

  23. Fujii M, et al. Preparation, characterization, and tableting of a solid dispersion of indomethacin with crospovidone. Int J Pharm. 2005;293:145–53.

    Article  CAS  PubMed  Google Scholar 

  24. Weuts I, et al. Physical stability of the amorphous state of loperamide and two fragment molecules in solid dispersions with the polymers PVP-K30 and PVP-VA64. Eur J Pharm Sci. 2005;25:313–20.

    Article  CAS  PubMed  Google Scholar 

  25. Konno H, Taylor LS. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci. 2006;95(12):2692–705.

    Article  CAS  PubMed  Google Scholar 

  26. Patterson JE, et al. Preparation of glass solutions of three poorly water soluble drugs by spray drying, melt extrusion and ball milling. Int J Pharm. 2007;336:22–34.

    Article  CAS  PubMed  Google Scholar 

  27. Suknuntha K, et al. Molecular modeling simulation and experimental measurements to characterize chitosan and poly(vinyl pyrrolidone) blend interactions. J Polym Sci B Polym Phys. 2008;46(12):1258–64.

    Article  CAS  Google Scholar 

  28. Shibata Y, et al. The preparation of a solid dispersion powder of indomethacin with crospovidone using a twin-screw extruder or kneader. Int J Pharm. 2009;365:53–60.

    Article  CAS  PubMed  Google Scholar 

  29. Kararli TT, Catalano T. Stabilization of misoprostol with hydroxypropyl methylcellulose (HPMC) against degradation by water. Pharm Res. 1990;7(11):1186–9.

    Article  CAS  PubMed  Google Scholar 

  30. Rumondor ACF, Taylor LS. Application of partial least-squares (PLS) modeling in quantifying drug crystallinity in amorphous solid dispersions. Int J Pharm. 2010;98(1–2):155–60.

    Article  Google Scholar 

  31. Fix I, Steffens K-J. Quantifying low amorphous or crystalline amounts of alpha-lactose monohydrate using X-ray powder diffraction, near-infrared spectroscopy, and differential scanning calorimetry. Drug Dev Ind Pharm. 2004;30(5):513–23.

    Article  CAS  PubMed  Google Scholar 

  32. Moore M, et al. A structural investigation into the compaction behavior of pharmaceutical composites using powder X-ray diffraction and total scattering analysis. Pharm Res. 2009;26(11):2429–37.

    Article  CAS  PubMed  Google Scholar 

  33. FDA. PAT: a framework for innovative manufacturing and quality assurance, guidance for industry. Washington, D.C: US Food and Drug Administration; 2003.

    Google Scholar 

  34. Okumura T, Otsuka M. Evaluation of the microcrystallinity of a drug substance, indomethacin, in a pharmaceutical model tablet by chemometric FT-Raman spectroscopy. Pharm Res. 2005;22(8):1350–7.

    Article  CAS  PubMed  Google Scholar 

  35. Taylor LS, Langkilde FW. Evaluation of solid-state forms present in tablets by Raman spectroscopy. J Pharm Sci. 2000;89(10):1342–53.

    Article  CAS  PubMed  Google Scholar 

  36. Savolainen M, et al. Determination of amorphous content in the pharmaceutical process environment. J Pharm Pharmacol. 2007;59:161–70.

    Article  CAS  PubMed  Google Scholar 

  37. Hu Y, et al. Estimation of the transition temperature for an enantiotropic polymorphic system from the transformation kinetics monitored using Raman spectroscopy. J Pharm Biomed Anal. 2007;45:546–51.

    Article  CAS  PubMed  Google Scholar 

  38. Heinz A, et al. Quantifying ternary mixtures of different solid-state forms of indomethacin by Raman and near-infrared spectroscopy. Eur J Pharm Sci. 2007;32:182–92.

    Article  CAS  PubMed  Google Scholar 

  39. Short SM, Cogdill RP, Anderson CA. Determination of figures of merit for near-infrared and Raman spectrometry by net analyte signal analysis for a 4-component solid dosage system. AAPS PharmSciTech. 2007;8(4):109–19.

    Article  Google Scholar 

  40. Gendrin C, Roggo Y, Collet C. Pharmaceutical applications of vibrational chemical imaging and chemometrics: a review. J Pharm Biomed Anal. 2008;48:533–53.

    Article  CAS  PubMed  Google Scholar 

  41. Cogdill RP, Anderson CA, Drennen JK. Process analytical technology case study, part III: calibration monitoring and transfer. AAPS PharmSciTech. 2005;6(2):E284–97.

    Article  PubMed  Google Scholar 

  42. Ma H, Anderson CA. Characterization of pharmaceutical powder blends by NIR chemical imaging. J Pharm Sci. 2008;97(8):3305–20.

    Article  CAS  PubMed  Google Scholar 

  43. Otsuka M, Kato F, Matsuda Y. Determination of indomethacin polymorphic contents by chemometric near-infrared spectroscopy and conventional powder X-ray diffractometry. Analyst. 2001;126:1578–82.

    Article  CAS  PubMed  Google Scholar 

  44. Crowley KJ, Zografi G. Cryogenic grinding of indomethacin polymorphs and solvates: assessment of amorphous phase formation and amorphous phase physical stability. J Pharm Sci. 2002;91(2):492–507.

    Article  CAS  PubMed  Google Scholar 

  45. Seyer JJ, Luner PE. Determination of indomethacin crystallinity in the presence of excipients using diffuse reflectance near-infrared spectroscopy. Pharm Dev Technol. 2001;64(4):573–82.

    Article  Google Scholar 

  46. Otsuka M, et al. Comparative determination of polymorphs of indomethacin in powders and tablets by chemometrical near-infrared spectroscopy and X-ray powder diffraction. AAPS PharmSciTech. 2003;4(2):1–12.

    Article  Google Scholar 

  47. Pan Z, Julian T, Augsburger L. Quantitative measurement of indomethacin crystallinity in indomethacin-silical gel binary system using differential scanning calorimetry and X-ray powder diffractometry. AAPS PharmSciTech. 2006;7(1):E1–7.

    Article  Google Scholar 

  48. Otsuka M, Kato F, Matsuda Y. Comparative evaluation of the degree of indomethacin crystallinity by chemoinfometrical Fourier-transformed near-infrared spectrscopy and conventional powder X-ray diffractometry. Pharm Sci Technol. 2000;2(1):1–8.

    Google Scholar 

  49. Lorber A. Error propagation and figures of merit for quantification by solving matrix equations. Anal Chem. 1986;58:1167–72.

    Article  CAS  Google Scholar 

  50. Lorber A, Faber K, Kowalski BR. Net analyte signal calculation in multivariate calibration. Anal Chem. 1997;69:1620–6.

    Article  CAS  Google Scholar 

  51. Bro R, Andersoen CM. Theory of net analyte signal vectors in inverse regression. J Chemom. 2003;17:646–52.

    Article  CAS  Google Scholar 

  52. Olivieri AC, et al. Uncertainty estimation and figures of merit for multivariate calibration. Pure Appl Chem. 2006;78:633–61.

    Article  CAS  Google Scholar 

  53. Ferre J, Brown SD, Rius FX. Improved calculation of the net analyte signal in inverse multivariate calibration. J Chemom. 2001;15:537–53.

    Article  CAS  Google Scholar 

  54. Goicoechea HC, Olivieri AC. Chemometric assisted simultaneous spectrophotometric determination of four-component nasal solutions with a reduced number of calibration samples. Anal Chem Acta. 2002;453:289–300.

    Article  CAS  Google Scholar 

  55. Long GL, Winefordner JD. Limits of detection: a closer look at the IUPAC definition. Anal Chem. 1983;55:712A–24.

    Article  CAS  Google Scholar 

  56. Faber NKM, et al. Characterizing the uncertainty in near-infrared spectroscopic prediction of mixed-oxygenate concentrations in gasoline: sample-specific prediction intervals. Anal Chem. 1998;70:2972–82.

    Article  CAS  Google Scholar 

  57. ICH. ICH harmonized guideline: validation of analytical procedures: text and methodology. Fed Regist. 1997;62:27463–7.

    Google Scholar 

  58. Skoog DA, Holler FJ, Crouch SR. Principles of instrumental analysis. 6th ed. Belmont, CA: Thomson-Brooks/Cole; 2007.

    Google Scholar 

  59. Schulze G, et al. Investigation of selected baseline removal techniques as candidates for automated implementation. Appl Spectrosc. 2005;59(5):545–74.

    Article  CAS  PubMed  Google Scholar 

  60. Rumondor ACF, et al. Phase behavior of poly(vinylpyrrolidone) containing amorphous solid dispersions in the presence of moisture. Mol Pharm. 2009;6(5):1492–505.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank F. Hoffmann-La Roche for providing funding, materials, and valuable insight during the course of this work. Appreciation is also extended to Dr. Peter L.D. Wildfong and Michael D. Moore for discussions regarding PXRD and thermal data collection and analysis. Special thanks to Dr. Patrick Flaherty and his students for insight and use of equipment for solvent evaporation procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James K. Drennen III.

Additional information

Teaser

This study demonstrates the usefulness of multivariate FOM determined from NAS theory in comparing calibrations from multiple analytical instruments which detect crystalline material based on different physical phenomena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palermo, R.N., Short, S.M., Anderson, C.A. et al. Determination of Figures of Merit for Near-Infrared, Raman and Powder X-ray Diffraction by Net Analyte Signal Analysis for a Compacted Amorphous Dispersion with Spiked Crystallinity. J Pharm Innov 7, 56–68 (2012). https://doi.org/10.1007/s12247-012-9127-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-012-9127-9

Keywords

Navigation