Skip to main content
Log in

Sequential Approximate Optimization of MacPherson Strut Suspension for Minimizing Side Load by Using Progressive Meta-Model Method

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

In a MacPherson strut suspension, the side load is inevitably generated and it causes friction at the damper reducing riding comfort. In this paper, to solve this problem, progressive meta-model based sequential approximate optimization (SAO) is performed to minimize the side load. To calculate the side load, a wheel travel analysis is performed by using flexible multi-body dynamics (FMBD) model of suspension, which can consider both finite element method (FEM) and multi-body dynamics (MBD). In the optimal design process, meta-model is generated by using extracted sampling points and radial basis function (RBF) method. As a result of optimal design, spring setting positions that minimize the side load are obtained and by using optimal spring setting positions, the suspension FMBD model was constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altair Engineering, Inc. (2014). MotionSolve 13.0 User’s Guide.

  • Gotoh, T. and Imaizumi, T. (2000). Optimization of force action line with new spring design on the MacPherson strut suspension for riding comfort. SAE Paper No. 2000-01-0101.

    Book  Google Scholar 

  • Hamano, T., Nakamura, T., Enomoto, H., Sato, N., Nishizawa, S. and Ikeda, M. (2001). Development of Lshape coil spring to reduce a friction on the McPherson strut suspension system. SAE Paper No. 2001-01-0497.

    Google Scholar 

  • Hastey, J. P., Jacques, B., Gerard, E., Jones, C. and Christelle, V. (1997). Optimization on MacPherson suspensions with a spring. SAE Paper No. 970100.

    Google Scholar 

  • Heo, S. J., Kang, D. O., Lee, J. H., Kim, I. H. and Darwish, S. M. H. (2013). Shape optimization of lower control arm considering multi-disciplinary constraint condition by using progress meta-model method. Int. J. Automotive Technology 14, 3, 499–505.

    Article  Google Scholar 

  • Joshi, A. H. and Chhabra, H. S. (2012). Mathematical model to find piercing point in McPherson strut suspension and design of profile for side force control spring. SAE Paper No. 2012-28-0014.

    Book  Google Scholar 

  • Kim, J. S., Back, S. and Min, J. H. (2013). Development relationship between kingpin axis and strut axis to reduce a damper side load on the MacPherson strut suspension system. KSAE Annual Conf. Proc., Korean Society of Automotive Engineers, 692–698.

    Google Scholar 

  • Kim, M. S., Kang, D. O. and Heo, S. J. (2014). Innovative design optimization strategy for the automotive industry. Int. J. Automotive Technology 15, 2, 291–301.

    Article  Google Scholar 

  • Liu, J., Zhuang, D. J., Yu, F. and Lou, L. M. (2008). Optimized design for a MacPherson strut suspension with side load springs. Int. J. Automotive Technology 9, 1, 29–35.

    Article  Google Scholar 

  • Nishizawa, S., Sakai, T., Ikeda, M. and Ruiz, W. (2006). Spring force line based damper friction control for coilover-shock applications. SAE Paper No. 2006-01-1538.

    Google Scholar 

  • Olshevskiy, A., Dmitrochenko, O. and Kim, C. W. (2013). Three-dimensional solid brick element using slopes in the absolute nodal coordinate formulation. J. Computational and Nonlinear Dynamics 9, 2.

    Article  Google Scholar 

  • Olshevskiy, A., Dmitrochenko, O., Dai, M. D. and Kim, C. W. (2015). The simplest 3-, 6-and 8-noded fullyparameterized ANCF plate elements using only transverse slopes. Multibody System Dynamics 34, 1, 23–51.

    Article  MathSciNet  MATH  Google Scholar 

  • Ryu, Y. I., Kang, D. O., Heo, S. J., Yim, H. J. and Jeon, J. I. (2010). Development of analytical process to reduce side load in strut-type suspension. J. Mechanical Science and Technology 24, 1, 351–356.

    Article  Google Scholar 

  • Shi, W., Park, H. C., Han, J. H., Na, S. K. and Kim, C. W. (2013). A study on the effect of different modeling parameters on the dynamic response of a jacket-type offshore wind turbine in the Korean Southwest Sea. Renewable Energy, 58, 50–59.

    Article  Google Scholar 

  • Suzuki, S., Kamiya, S., Imaizumi, T. and Sanada, Y. (1996). Approaches to minimizing side force of helical coil springs for riding comfort. SAE Paper No. 960730.

    Book  Google Scholar 

  • Thomas, W., Karl, M., Karl, B. and Leo, S. (1994). Side load springs as a solution to minimize adverse side loads acting on the McPherson strut. SAE Paper No. 940862.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Wan Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, B.C., Cho, S. & Kim, CW. Sequential Approximate Optimization of MacPherson Strut Suspension for Minimizing Side Load by Using Progressive Meta-Model Method. Int.J Automot. Technol. 19, 455–461 (2018). https://doi.org/10.1007/s12239-018-0044-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-018-0044-x

Keywords

Navigation