Skip to main content
Log in

Dynamic sensor zeroing algorithm of 6D IMU mounted on ground vehicles

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

The main focus of this paper is to compensate the steady state offset error of the 6D IMU which provides the measurements that include the vehicle linear accelerations and angular rates of all three axes. Additionally, the sensor compensation algorithm exploits the wheel speed data and the steering angle information, since they are already available in most of the modern mass production vehicles. These inputs are combined with the inverse vehicle kinematics to estimate the steady state offset error of each sensor inputs as it is done in a disturbance observer, and the raw sensor measurements are compensated by the estimated offset errors. The stability of the error dynamics regarding the integrated signal processing system is verified, and finally, the performance of the system is tested via experiments based on a real production SUV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

m :

vehicle mass

g :

gravitational constant

l f :

distance between C.G. and front axle

l r :

distance between C.G. and rear axle

I z :

moment of inertia about z-axis

C f :

front tire cornering stiffness

C r :

rear tire cornering stiffness

β :

side slip angle at C.G

ν x :

longitudinal velocity at C.G.

ν y :

lateral velocity at C.G.

ν z :

vertical velocity at C.G.

α x :

longitudinal acceleration measured at C.G.

α y :

lateral acceleration measured at C.G.

α z :

vertical acceleration measured at C.G

ϕ :

roll angle

θ :

pitch angle

ψ :

yaw angle

p :

roll rate measured at C.G.

q :

pitch rate measured at C.G.

r :

yaw rate measured at C.G.

g f :

front tire steering angle

References

  • Abdel-Hamid, W., Abdelazim, T., El-Sheimy, N. and Lachapelle, G. (2006). Improvement of MEMS-IMU/GPS performance using fuzzy modeling. GPS Solution 10,2, 1–11.

    Article  Google Scholar 

  • Begin, J. D. and Cheok, K. C. (1998). Calibration of Multiaxis Accelerometer in Vehicle Navigation System. U.S. Patent 6532419.

    Google Scholar 

  • Cho, S. Y. and Choi, W. S. (2005). A robust positioning technique in DR/GPS using the receding horizon sigma point Kalman FIR filter. Proc. IEEE IMTC 2005, 1354–1359.

    Google Scholar 

  • Cho, S. Y. and Choi, W. S. (2006). Performance enhancement of low-cost land navigation for location based service. ETRI J. 28,2, 131–144.

    Article  Google Scholar 

  • Kim, S. B., Choi, K. H., Lee, S. Y., Choi, J. H., Hwang, T. H., Jang, B. T. and Lee, J. H. (2004). A bimodal approach for land vehicle localization. ETRI J. 26,5, 497–500.

    Article  Google Scholar 

  • Li, Y., Wang, J., Rizos, C., Baitch, G. and Kinlyside, D. (2005). Application of GPS/INS integration technique to bushfire monitoring. Spatial Sciences Conf., Melbourne, Australia, 1394–1403.

    Google Scholar 

  • Noureldin, A., Karamat, B., Eberts, M. D. and El-Shafie, A. (2009). Performance enhancement of MEMS-based INS/GPS integration for low-cost navigation applications. IEEE Trans. Vehicular Technology 58,3, 1077–1096.

    Article  Google Scholar 

  • Oh, J. and Choi, S. B. (2011). Design of a new composite observer for vehicle velocity and attitude estimation. Proc. IASTED Int. Conf., Control and Applications, Vancouver, BC, Canada, 102–109.

    Google Scholar 

  • Oh, J., Noh, Y. and Choi, S. B. (2013). Real-time offset error compensation of 6D IMU mounted on ground vehicles using disturbance observer. Int. Conf. Intelligent Information and Networks, Male, Maldives.

    Google Scholar 

  • Rogers, R. M. (1997). IMU in-motion alignment without benefit of attitude initialization, navigation. J. Institute of Navigation 44,3, 301–311.

    Google Scholar 

  • Shin, E. H. (2001). Accuracy Improvement of Low Cost INS/GPS for Land Applications. UCGE Reports Number 20156, The University of Calgary, Calgary, Alberta, Canada.

    Google Scholar 

  • Shin, E. H. and El-Sheimy, N. (2004). An unscented Kalman filter for in-motion alignment of low-cost IMUs. Proc. IEEE Frames Conf., 273–279.

    Google Scholar 

  • Son, H. W. (2008). A study on design of a robust vehicle side-slip angle observer using an integration of kinematic and bicycle model. KSAE 2008 Annual Conf., Daejeon, Korea.

    Google Scholar 

  • Tanaka, H. and Kazumi, Y. (1996). Gravitational Accelerometer Provided with Zero Adjuster. U.S. Patent 5526263.

    Google Scholar 

  • You, S. H., Hahn, J. O. and Lee, H. C. (2009). New adaptive approaches to real-time estimation of vehicle sideslip angle. Control Engineering Practice 17,12, 1367–1379.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, J., Choi, S.B. Dynamic sensor zeroing algorithm of 6D IMU mounted on ground vehicles. Int.J Automot. Technol. 14, 221–231 (2013). https://doi.org/10.1007/s12239-013-0025-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-013-0025-z

Key Words

Navigation