Skip to main content

Advertisement

Log in

Development and Application of a Method to Identify Salt Marsh Vulnerability to Sea Level Rise

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Wetlands are commonly assessed for ecological condition and biological integrity using a three-tiered framework of landscape-scale assessment, rapid assessment protocols, and intensive biological and physiochemical measurements. However, increased inundation resulting from accelerated sea level rise (SLR) is negatively impacting tidal marsh ecosystem functions for US Northeast coastal wetlands, yet relative vulnerability to this stressor is not incorporated in condition assessments. This article assesses tools available to measure coastal wetland vulnerability to SLR, including measurements made as part of traditional rapid condition assessments (e.g., vegetation communities, soil strength), field and remote sensing-based measurements of elevation, VDatum, and Sea Level Affecting Marshes Model (SLAMM) model outputs. A vulnerability metric that incorporates these tools was calibrated and validated using recent rates of marsh vegetation losses (1972–2011) as a surrogate for future vulnerability. The metric includes complementary measures of elevation capital, including the percentage of high vs. low marsh vegetation, Spartina alterniflora height, elevation measurements, and SLAMM outputs that collectively explained 62% of the variability in recent rates of marsh vegetation loss. Stepwise regression revealed that all three elements (elevation, vegetation measures, and SLAMM outputs) explained significant and largely unique components of vulnerability to SLR, with the greatest level of overlap found between SLAMM outputs and elevation metrics. While soil strength varied predictably with habitat zone, it did not contribute significantly to the vulnerability metric. Despite the importance of determining wetland elevation above key tidal datums of mean sea level and mean high water, we caution that VDatum was found to perform poorly in back-barrier estuaries. This factor makes it difficult to compare elevation capital among marshes that differ in tidal range and poses accuracy problems for broad-scale modeling efforts that require accurate tidal datums. Given the pervasive pattern of coastal wetland drowning occurring in the Northeastern USA and elsewhere, we advocate that compilation of regional data on marsh habitats and vulnerability to SLR is crucial as it permits agencies to target adaptation to sites based on their vulnerability or mixture of habitats, it helps match sites to appropriate interventions, and it provides a broader regional context to site-specific management actions. Without such data, adaptation actions may be implemented where action is not necessary and to the disadvantage of vulnerable sites where opportunities for successful adaptation will be missed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arlot, S., and A. Celisse. 2010. A survey of cross-validation procedures for model selection. Statistics Survey 4: 40–79.

    Article  Google Scholar 

  • Bakkensen, L.A., C. Fox-Lent, L.K. Read, and I. Linkov. 2017. Validating resilience and vulnerability indices in the context of natural disasters. Risk Analysis. doi:10.1111/risa.12677.

    Google Scholar 

  • Barbier, E.B., S.D. Hacker, C. Kennedy, E.W. Koch, A.C. Stier, and B.R. Silliman. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81: 169–193. doi:10.1890/10-1510.1.

    Article  Google Scholar 

  • Basso, G., K. O’Brien, M. Albino Hegeman, and V. O’Neill. 2015. Status and trends of wetlands in the Long Island Sound Area: 130 year assessment. U.S. Department of the Interior, Fish and Wildlife Service. 36 p.

  • Bayard, T.S., and C.S. Elphick. 2011. Planning for sea-level rise: quantifying patterns of saltmarsh sparrow (Ammodramus caudacutus) nest flooding under current sea-level conditions. The Auk 128 (2): 393–403.

  • Berry, W.J., S.E. Reinert, M.E. Gallagher, S.M. Lussier, and E. Walsh. 2015. Population status for the seaside sparrow in Rhode Island: a 25-year assessment. Northeastern Naturalist 22: 658–671.

    Article  Google Scholar 

  • Boothroyd, J.C., N.E. Friedrich, and S.R. McGinn. 1985. Geology of microtidal coastal lagoons: Rhode Island. Marine Geology 63: 35–76.

    Article  Google Scholar 

  • Bricker-Urso, S., S.W. Nixon, J.K. Cochran, D.J. Hirschberg, and C. Hunt. 1989. Accretion rates and sediment accumulation in Rhode Island salt marshes. Estuaries 12: 300–317.

    Article  CAS  Google Scholar 

  • Burns, T.N. 2015. Spartina alterniflora responses to flooding in two salt marshes on the Eastern Shore of Virginia. M.S. thesis, University of Virginia.

  • Cahoon, D.R. 2016. Estimating relative sea-level rise and submergence potential at a coastal wetland. Estuaries and Coasts 38: 1077–1084.

    Article  Google Scholar 

  • Cahoon, D.R., and G.R. Guntenspergen. 2010. Climate change, sea-level rise, and coastal wetlands. National Wetlands Newsletter 32: 8–12.

    Google Scholar 

  • Cahoon, D.R., P.F. Hensel, T. Spencer, D.J. Reed, K.L. McKee, and N. Saintilan. 2006. Coastal wetland vulnerability to relative sea-level rise: wetland elevation trends and process controls. In , ed. Wetlands and natural resource management, J.T.A. Verhoeven, B. Beltman, R. Bobbink, F. D., and D.F. Whigham, 271–292. Berlin: Springer.

    Google Scholar 

  • Cameron Engineering and Associates. 2015. Long Island tidal wetland trends analysis. Prepared for the New England Interstate Water Pollution Control Commission, 207 pp. http://www.dec.ny.gov/lands/5113.html

  • Carey, J.C., S.B. Moran, R.P. Kelly, A.S. Kolker, and R.W. Fulweiler. (2015a). The declining role of organic matter in New England salt marshes. Estuaries and Coasts. doi:10.1007/s12237-015-9971-1.

  • Carey, J.C., K.B. Raposa, C. Wigand, and R.S. Warren. (2015b). Contrasting decadal-scale changes in elevation and vegetation in two Long Island Sound salt marshes. Estuaries and Coasts. doi:10.1007/s12237-015-0059-8.

  • Carrascal, L.M., I. Galván, and O. Gordo. 2009. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118: 681–690.

    Article  Google Scholar 

  • Carullo, M., B.K. Carlisle, and J.P. Smith. 2007. A New England rapid assessment method for assessing condition of estuarine marshes: a Boston Harbor, Cape Cod and Islands Pilot study. Boston, MA: Massachusetts Office of Coastal Zone Management.

    Google Scholar 

  • Chassereau, J.E., J.M. Bell, and R. Torres. 2011. A comparison of GPS and LiDAR salt marsh DEMs. Earth Surface Processes and Landforms 36: 1770–1775.

    Article  Google Scholar 

  • Church, J.A., and N.J. White. 2006. A 20th century acceleration in global sea-level rise. Geophysical Research Letters 33: L024826.

    Article  Google Scholar 

  • Clough, J.S., R.A. Park, and R. Fuller. 2010. SLAMM 6 beta technical documentation, Available at: http://warrenpinnacle.com/prof/SLAMM6/SLAMM6 Technical Documentation.pdf

  • Clough, J., A. Polacyk, and M. Propato. 2014. Application of Sea-Level Affecting Marshes Model (SLAMM) to Long Island, NY and New York City. NYSERDA Report 14–29 https://www.nyserda.ny.gov/-/media/Files/Publications/Research/Environmental/SLAMM-report.pdf

  • Deegan, L.A., D.S. Johnson, R.S. Warren, B.J. Peterson, J.W. Fleeger, S. Fagherazzi, and W.M. Wollheim. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature 490: 388–392.

    Article  CAS  Google Scholar 

  • Donnelly, J.P., and M.D. Bertness. 2001. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proceedings of the National Academy of Science 98: 14218–14223.

    Article  CAS  Google Scholar 

  • Downs, L.L., R.J. Nicholls, S.P. Leatherman, and J. Hautzenroder. 1994. Historic evolution of a marsh island: Bloodsworth Island, Maryland. Journal of Coastal Research 10: 1031–1044.

    Google Scholar 

  • Ellison, J.C. 2016. Mangrove vulnerability assessment methodology and adaptation prioritisation. The Malaysian Forester 79: 95–108.

    Google Scholar 

  • Ford, M.A., D.R. Cahoon, and J.C. Lynch. 1999. Restoring marsh elevation in a rapidly subsiding salt marsh by thin-layer deposition of dredged material. Ecological Engineering 12: 189–205.

    Article  Google Scholar 

  • Frame, G.W., M.K. Mellander, and D.A. Adamo. 2006. Big egg marsh experimental restoration in Jamaica Bay, New York. In People, places, and parks: Proceedings of the 2005 George Wright Society Conference on Parks, Protected Areas, and Cultural Sites, ed. D. Harmon, 123–130. Hancock: MI: The George Wright Society.

    Google Scholar 

  • French, J. 2006. Tidal marsh sedimentation and resilience to environmental change: exploratory modelling of tidal, sea-level and sediment supply forcing in predominantly allochthonous systems. Marine Geology 235: 119–136.

    Article  Google Scholar 

  • Ganju, N.K., M.L. Kirwan, P.J. Dickhudt, G.R. Guntenspergen, D.R. Cahoon, and K.D. Kroeger. 2015. Sediment transport-based metrics of wetland stability. Geophysical Research Letters 42: 7992–8000.

    Article  Google Scholar 

  • García-Marín, P., S. Cabaço, I. Hernández, J.J. Vergara, J. Silva, and R. Santos. 2013. Multi-metric index based on the seagrass Zostera noltii (ZoNI) for ecological quality assessment of coastal and estuarine systems in SW Iberian Peninsula. Marine Pollution Bulletin 68: 46–54.

    Article  Google Scholar 

  • Gedan, K.B., M.L. Kirwan, E. Wolanski, E.B. Barbier, and B.R. Silliman. 2011. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Climate Change 106: 7–29.

    Article  Google Scholar 

  • Geselbracht, L., K. Freeman, E. Kelly, D.R. Gordon, and F.E. Putz. 2011. Retrospective and prospective model simulations of sea level rise impacts on Gulf of Mexico coastal marshes and forests in Waccasassa Bay, Florida. Climatic Change 107: 35–57.

    Article  Google Scholar 

  • Hanson, A.R. and W.G. Shriver. 2006. Breeding birds of northeast saltmarshes: habitat use and conservation. Pages 141–154 In: (R. Greenberg, S. Droege, J. Maldonado, and M.V. McDonald, eds.): Vertebrates of tidal marshes: ecology, evolution, and conservation. Studies in Avian Biology 32. Lawrence, KS.

  • Hartig, E.K., V. Gormitz, A. Kolker, F. Mushacke, and D. Fallon. 2002. Anthropogenic and climate-change impacts on salt marshes of Jamaica Bay, New York City. Wetlands 22: 71–89.

    Article  Google Scholar 

  • Hladik, C., and M. Alber. 2012. Accuracy assessment and correction of a LIDAR-derived salt marsh digital elevation model. Remote Sensing of Environment 121: 224–235.

    Article  Google Scholar 

  • Karr, J.R. 1981. Assessment of biotic integrity using fish communities. Fisheries 6: 21–27.

    Article  Google Scholar 

  • Kearney, M.S., and R.E. Turner. 2016. Microtidal marshes: can these widespread and fragile marshes survive increasing climate–sea level variability and human action? Journal of Coastal Research 32: 686–699.

    Article  Google Scholar 

  • Kearney, M.S., J.C. Stevenson, and L.G. Ward. 1994. Spatial and temporal changes in marsh vertical accretion rates at Monie Bay: implications for sea-level rise. Journal of Coastal Research 10: 57–1020.

    Google Scholar 

  • Kearney, M.S., A.S. Rogers, J.R.G. Townshend, E. Rizzo, D. Stutzer, J. Stevenson, and K. Sundberg. 2002. Landsat imagery shows decline of coastal marshes in Chesapeake and Delaware bays. Eos, Transactions American Geophysical Union 8: 173–178.

    Article  Google Scholar 

  • Kirwan, M.L., and G.R. Guntenspergen. 2015. Response of plant productivity to experimental flooding in a stable and submerging marsh. Ecolosytems 18: 903–913.

    Article  Google Scholar 

  • Kirwan, M.L., G.R. Guntenspergen, A. D’Alpaos, J.T. Morris, S.M. Mudd, and S. Temmerman. 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters 37: L2340.

    Article  Google Scholar 

  • Kreeger, D., J. Moody, M. Katkowski, M. Boatright and D. Rosencrance. 2015. Marsh futures: use of scientific survey tools to assess local salt marsh vulnerability and chart best management practices and interventions. Partnership for the Delaware Estuary, Wilmington, DE. PDE Report No. 15–03.

  • Kremer, J.N., and S.W. Nixon. 1978. A coastal marine ecosystem: simulation and analysis, 217 pp. NY: Springer-Verlag.

    Book  Google Scholar 

  • Kroll, C.N., and P. Song. 2013. Impact of multicollinearity on small sample hydrologic regression models. Water Resources Research 49: 3756–3769.

    Article  Google Scholar 

  • Lee, V., and S. Olsen. 1985. Eutrophication and management initiatives for the control of nutrient inputs to Rhode Island coastal lagoons. Estuaries 8: 191–202.

    Article  Google Scholar 

  • Licuanan, W.Y., M.S. Samson, S.S. Mamauag, L.T. David, R. Borja-del Rosario, M.C.C.C. Quiblan, F.T. Piringan, M.Y.S. Marina, N.B. España, C.L. Villanoy, R.C. Geronimo, O.C. Cabrera, R.J.S. Martinez, and P.M. Aliño. 2015. IC-SEA change: a participatory tool for rapid assessment of vulnerability of tropical coastal communities to climate change impacts. Ambio 8: 718–736.

    Article  Google Scholar 

  • Lovelock, C.E., D.R. Cahoon, D.A. Friess, G.R. Guntenspergen, K.W. Krauss, R. Reef, K. Rogers, M.L. Saunders, F. Sidik, A. Swales, and N. Saintilan. 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526: 559–563.

    Article  CAS  Google Scholar 

  • Lynch, J.C., P. Hensel, and D.R. Cahoon. 2015. The surface elevation table and marker horizon technique—a protocol for monitoring wetland elevation dynamics. In Natural resource report NPS/NCBN/NRR–2015/1078. Fort Collins, CO: National Park Service.

    Google Scholar 

  • Lyons, J., A. Gutierrez-Hernandez, E. Díaz-Pardo, E. Soto-Galera, M. Medina-Nava, and R. Pineda-Lopez. 2000. Development of a preliminary index of biotic integrity (IBI) based on fish assemblages to assess ecosystem condition in the lakes of Central Mexico. Hydrobiologia 418: 57–72.

    Article  Google Scholar 

  • Maher, N., S. Lloyd, and L. Alleman. 2016. New York City tidal marsh systems analysis: conditions, vulnerability, and opportunities for restoration. Prepared for: City of New York Department of Parks and Recreation, Division of Forestry, Horticulture. The Nature Conservancy, 56 pp.

  • McKee, K.L., and W.H. Patrick Jr. 1988. The relationship of smooth cordgrass (Spartina alterniflora) to tidal datums: a review. Estuaries 11: 143–151.

    Article  Google Scholar 

  • McKinney, R.A., and C. Wigand. 2006. A framework for the assessment of the wildlife habitat value of New England salt marshes. EPA/600/R-06/132. Office of Research and Development. Washington, DC 20460.

  • Mcleod, E., G.L. Chmura, S. Bouillon, R. Salm, M. Bjork, C.M. Duarte, C.E. Lovelock, W.H. Schlesinger, and B.R. Silliman. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9: 552–560. doi:10.1890/110004.

    Article  Google Scholar 

  • Miller, D.A., A. Padeletti, D. Kreeger, A. Homsey, R. Tudor, E. Creveling, M.M. DePhillip, and C. Pindar. 2012. Chapter 5—aquatic habitats. In the Technical report for the Delaware Estuary and Basin. Partnership for the Delaware Estuary. PDE Report No. 12–01. June 2012, pp. 119–165.

  • Morris, J.T., and W.B. Bowden. 1986. A mechanistic, numerical model of sedimentation, mineralization, and decomposition for marsh sediments. Soil Science Society of America Journal 50: 96–105.

    Article  CAS  Google Scholar 

  • Morris, J.T., D. Porter, M. Neet, P.A. Noble, L. Schmidt, L.A. Lapine, and J.R. Jensen. 2005. Integrating LIDAR elevation data, multi-spectral imagery and neural network modelling for marsh characterization. International Journal of Remote Sensing 26: 5221–5234.

    Article  Google Scholar 

  • Mudd, S.M., S.M. Howell, and J.T. Morris. 2009. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuarine, Coastal and Shelf Science 82: 377–389.

    Article  CAS  Google Scholar 

  • Neckles, H.A., J.E. Lyons, G.R. Guntenspergen, W.G. Shriver, and S.C. Adamowicz. 2015. Use of structured decision making to identify monitoring variables and management priorities for salt marsh ecosystems. Estuaries and Coasts 38: 1215–1232.

    Article  CAS  Google Scholar 

  • NOAA. 2003. Computational techniques for tidal datums. NOAA Special Publication NOS CO-OPS 2. National Oceanic and Atmospheric Administration, National Ocean Service Center for Operational Oceanographic Products and Services, Silver Spring, MD. http://tidesandcurrents.noaa.gov/publications/Computational_Techniques_for_Tidal_Datums_handbook.pdf

  • NOAA. 2014. Estimation of vertical uncertainties in VDatum. NOAA pamphlet, Silver Spring, MD. http://vdatum.noaa.gov/download/publications/Estimation_of_Vertical_Uncertainties_in_Vdatum_20141212.pdf

  • Passeri, D.L., S.C. Hagen, S.C. Medeiros, M.V. Bilskie, K. Alizad, and D. Wang. 2015. The dynamic effects of sea level rise on low-gradient coastal landscapes: a review. Earth’s Future 3: 159–181.

    Article  Google Scholar 

  • Potapova, M., and D.F. Charles. 2007. Diatom metrics for monitoring eutrophication in rivers of the United States. Ecological Indicators 31: 48–70.

    Article  Google Scholar 

  • Raabe, E.A., and R.P. Stumpf. 2016. Expansion of tidal marsh in response to sea-level rise: Gulf Coast of Florida, USA. Estuaries and Coasts 39: 145–157.

    Article  Google Scholar 

  • Raposa, K.B., and C.T. Roman. 2001. Seasonal habitat-use patterns of nekton in a tide-restricted and unrestricted New England salt marsh. Wetlands 21: 451–461.

    Article  Google Scholar 

  • Raposa, K.B., M.L. Cole Ekberg, D.M. Burdick, N.T. Ernst, and S.C. Adamowicz. 2016. Elevation change and the vulnerability of Rhode Island (USA) salt marshes to sea-level rise. Regional Environmental Change. doi:10.1007/s10113-016-1020-5.

    Google Scholar 

  • Raposa, K.B., K. Wasson, E. Smith, J.A. Crooks, P. Delgado, S.H. Fernald, M. Ferner, A. Helms, L.A. Hice, J.W. Mora, B. Puckett, D. Sanger, S. Shull, L. Spurrier, R. Stevens, and S. Lerberg. 2017. Assessing tidal marsh resilience to sea-level rise at broad geographic scales with multi-metric indices. Biological Conservation

  • Raposa, K.B., R.L.J. Weber, M.L. Cole Ekberg, and W. Ferguson. this volume. Vegetation dynamics in Rhode Island salt marshes during a period of accelerating sea level rise and extreme sea level events. Estuaries and Coasts. doi:10.1007/s12237-015-0018-4.

  • Rehn, A.C. 2009. Benthic macroinvertebrates as indicators of biological condition below hydropower dams on west slope Sierra Nevada streams, California, USA. River Research and Applications 25: 208–228.

    Article  Google Scholar 

  • RI CRMC [Rhode Island Coastal Resources Management Council]. 2015. The Rhode Island Sea Level Affecting Marshes Model (SLAMM) project summary report. The Rhode Island Coastal Resources Management Council, Wakefield, RI. http://www.crmc.ri.gov/maps/maps_slamm/20150331_RISLAMM_Summary.pdf

  • Roman, C.T., N. Jaworski, F.T. Short, S. Findlay, and R.S. Warren. 2000. Estuaries of the northeastern United States: habitat and land use signatures. Estuaries 23 (6): 743–764.

    Article  CAS  Google Scholar 

  • Roman, C.T., M.-J. James-Pirri, and J.F. Heltshe. 2001. Monitoring salt marsh vegetation. USGS Patuxent Wildlife Research Center. Narragansett, RI: Coastal Research Field Station 46 pp.

    Google Scholar 

  • Rozas, L.P., and D.J. Reed. 1993. Nekton use of marsh-surface habitats in Louisiana (USA) deltaic salt marshes undergoing submergence. Marine Ecology-Progress Series 96: 147–157.

    Article  Google Scholar 

  • Schile, L.M., J.C. Callaway, J.T. Morris, D. Stralberg, V.T. Parker, and M. Kelly. 2014. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency. PloS One 9 (2): e88760.

    Article  Google Scholar 

  • Schoolmaster, D.R., J.B. Grace, and E. William Schweiger. 2012. A general theory of multimetric indices and their properties. Methods in Ecology and Evolution 3 (4): 773–781.

  • Sifneos, J.C., A.T. Herlihy, A.D. Jacobs, and M.E. Kentula. 2010. Calibration of the Delaware rapid assessment protocol to a comprehensive measure of wetland condition. Wetlands 30: 1011–1022.

    Article  Google Scholar 

  • Smith, S.M. 2009. Multi-decadal changes in salt marshes of Cape Cod, MA: photographic analyses of vegetation loss, species shifts, and geomorphic change. Northeastern Naturalist 16: 183–208.

    Article  Google Scholar 

  • Smith, J.A.M. 2013. The role of Phragmites australis in mediating inland salt marsh migration in a Mid-Atlantic estuary. PloS One 8 (5): e65091.

    Article  Google Scholar 

  • Smith, S.M. 2015. Vegetation change in salt marshes of Cape Cod National Seashore (Massachusetts, USA) between 1984 and 2013. Wetlands 35: 127–136.

    Article  Google Scholar 

  • Smith, S.M., and K.D. Lee. 2015. The influence of prolonged flooding on the growth of Spartina alterniflora in Cape Cod (Massachusetts, USA). Aquatic Botany 127: 53–56.

    Article  Google Scholar 

  • Smith, S.M., M. Tyrrell, K. Medeiros, H. Bayley, S. Fox, M. Adams, C. Mejia, A. Dijkstra, S. Janson, and M. Tanis. 2016. Hypsometry of Cape Cod salt marshes (Massachusetts, USA) and predictions of marsh vegetation responses to sea-level rise. Journal of Coastal Research. doi:10.2112/JCOASTRESD1500153.1.

    Google Scholar 

  • Stoddard, J.L., A.T. Herlihy, D.V. Peck, R.M. Hughes, T.R. Whittier, and E. Tarquinio. 2008. A process for creating multimetric indices for larger-scale aquatic surveys. Journal of the North American Benthological Society 27: 878–891.

    Article  Google Scholar 

  • Stohlgren, T.J., K.A. Bull, and Y. Otsuki. 1998. Comparison of rangeland vegetation sampling techniques in the Central Grasslands. Journal of Range Management 51: 164–172.

    Article  Google Scholar 

  • Stralberg, D., M. Brennan, J.C. Callaway, J.K. Wood, L.M. Schile, D. Jongsomjit, M. Kelly, V.T. Parker, and S. Crooks. 2011. Evaluating tidal marsh sustainability in the face of sea-level rise: a hybrid modeling approach applied to San Francisco Bay. PloS One 16: e27388.

    Article  Google Scholar 

  • Swanson, R.L., Variability of tidal datums and accuracy in determining datums from short series of observations, NOAA Tech. Rep. NOS 64, Silver Spring, MD, pp. 41, 1974.

  • Swanson, K.M., J.Z. Drexler, D.H. Schoellhamer, K.M. Thorne, M.L. Casazza, C.T. Overton, J.C. Callaway, and J.Y. Takekawa. 2014. Wetland accretion rate model of ecosystem resilience (WARMER) and its application to habitat sustainability for endangered species in the San Francisco Estuary. Estuaries and Coasts 37: 476–492.

    Article  Google Scholar 

  • Thieler, E.R., and E.S. Hammar-Klose. 1999. National Assessment of Coastal Vulnerability to Sea-Level Rise: preliminary results for the U.S. Atlantic Coast. U.S. Geological Survey Open-File Report 99-593. Woods Hole, MA, USA.

  • Tol, R.S. 2007. The double trade-off between adaptation and mitigation for sea level rise: an application of FUND. Mitigation and Adaptation Strategies for Global Change 12: 741–753.

    Article  Google Scholar 

  • Torio, D.D., and G.L. Chmura. 2013. Assessing coastal squeeze of tidal wetlands. Journal of Coastal Research 29: 1049–1061.

    Article  Google Scholar 

  • Twohig, T.M., and M.H. Stolt. 2011. Soils-based rapid assessment for quantifying changes in salt marsh condition as a result of hydrologic alteration. Wetlands 31: 955–963.

    Article  Google Scholar 

  • Valiela, I., and M.L. Cole. 2002. Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads. Ecosystems 5: 92–102.

    Article  Google Scholar 

  • Valiela, I., J.M. Teal, and W.G. Deuser. 1978. The nature of growth forms in the salt marsh grass Spartina alterniflora. American Naturalist 112: 461–470.

    Article  Google Scholar 

  • Vasconcelos, R.P., P. Reis-Santos, V. Fonseca, A. Maia, M. Ruano, S. França, C. Vinagre, M.J. Costa, and H. Cabral. 2007. Assessing anthropogenic pressures on estuarine fish nurseries along the Portuguese coast: a multi-metric index and conceptual approach. Science of the Total Environment 374: 199–215.

    Article  CAS  Google Scholar 

  • Voss, C.M., R.R. Christian, and J.T. Morris. 2013. Marsh macrophyte responses to inundation anticipate impacts of sea-level rise and indicate ongoing drowning of North Carolina marshes. Marine Biology 160: 181–194.

    Article  Google Scholar 

  • Warren, R.S., and W.A. Niering. 1993. Vegetation change on a northeast tidal marsh: interaction of sea-level rise and marsh accretion. Ecology 74: 96–103.

    Article  Google Scholar 

  • Warren Pinnacle Consulting. 2016. Completed USFWS reports. http://warrenpinnacle.com/prof/SLAMM/USFWS/

  • Wasson, K., B. Suarez, A. Akhavan, E. McCarthy, J. Kildow, K.S. Johnson, M.C. Fountain, A. Woolfolk, M. Silberstein, L. Pendleton, and D. Feliz. 2015. Lessons learned from an ecosystem-based management approach to restoration of a California estuary. Marine Policy 58: 60–70.

    Article  Google Scholar 

  • Watson, E.B., K. Wasson, G.B. Pasternack, A. Woolfolk, E. Van Dyke, A.B. Gray, A. Pakenham, and R.A. Wheatcroft. 2011. Applications from paleoecology to environmental management and restoration in a dynamic coastal environment. Restoration Ecology 19: 765–775.

    Article  Google Scholar 

  • Watson, E.B., A.J. Oczkowski, C. Wigand, A.R. Hanson, E.W. Davey, S.C. Crosby, R.L. Johnson, and H.M. Andrews. 2014. Nutrient enrichment and precipitation changes do not enhance resiliency of salt marshes to sea level rise in the Northeastern U.S. Climatic Change 125: 501–509.

    Article  CAS  Google Scholar 

  • Watson, E.B., C. Wigand, M. Cencer, and K. Blount. 2015. Inundation and precipitation effects on growth and flowering of the high marsh species Juncus gerardii. Aquatic Botany 121: 52–56.

    Article  Google Scholar 

  • Watson, E.B., K. Szura, C. Wigand, K.B. Raposa, K. Blount, and M. Cencer. 2016. Sea level rise, drought, and the decline of Spartina patens in New England marshes. Biological Conservation 196: 173–181.

    Article  Google Scholar 

  • Watson, E.B., C. Wigand, E.W. Davey, H.M. Andrews, J. Bishop, and K.B. Raposa. this volume. Wetland loss patterns and inundation-productivity relations prognosticate widespread salt marsh loss for southern New England. Estuaries and Coasts. doi:10.1007/s12237-016-0069-1.

  • Webb, E.L., D.A. Friess, K.W. Krauss, D.R. Cahoon, G.R. Guntenspergen, and J. Phelps. 2013. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Climate Change 3: 458–465.

    Article  Google Scholar 

  • Weston, N.B. 2014. Declining sediments and rising seas: an unfortunate convergence for tidal wetlands. Estuaries and Coasts 37: 1–23.

    Article  Google Scholar 

  • Wigand, C., R.A. McKinney, M. Chintala, S. Lussier, and J. Heltshe. 2010. Development of a reference coastal wetland set in southern New England (USA). Environmental Monitoring and Assessment 161: 583–598.

    Article  CAS  Google Scholar 

  • Wigand, C., B. Carlisle, J. Smith, M. Carullo, D. Fillis, M. Charpentier, R. McKinney, R. Johnson, and J. Heltshe. 2011. Development and validation of rapid assessment indices of condition for coastal tidal wetlands in southern New England, USA. Environmental Monitoring and Assessment 182: 31–46.

    Article  CAS  Google Scholar 

  • Wigand, C., C.T. Roman, E. Davey, M. Stolt, R. Johnson, A. Hanson, E.B. Watson, S.B. Moran, D.R. Cahoon, J.C. Lynch, and P. Rafferty. 2014. Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure. Ecological Applications 24: 633–649.

    Article  Google Scholar 

  • Wigand, C., E. Davey, R. Johnson, K. Sundberg, J. Morris, P. Kenny, E. Smith, and M. Holt. 2015. Nutrient effects on belowground organic matter in a minerogenic salt marsh, North Inlet, SC. Estuaries and Coasts 38: 1838–1853.

    Article  CAS  Google Scholar 

  • Wigand, C., T. Ardito, C. Chaffee, W. Ferguson, S. Paton, K.B. Raposa, C. Vandemoer, and E.B. Watson. this volume. A climate change adaptation strategy for management of coastal marsh systems. Estuaries and Coasts. doi:10.1007/s12237-015-003-y.

  • Wong, J.X., C. Van Colen, and L. Airoldi. 2015. Nutrient levels modify saltmarsh responses to increased inundation in different soil types. Marine Environmental Research 104: 37–46.

    Article  CAS  Google Scholar 

  • Wu, W., K.M. Yeager, M.S. Peterson, and R.S. Fulford. 2015. Neutral models as a way to evaluate the Sea Level Affecting Marshes Model (SLAMM). Ecological Modelling 303: 55–69.

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Kutcher, M. Stolt, S. Adamowicz, W. Berry, C. Wigand, S. Paton, and C. Chaffee for assistance in developing and implementing the protocol. We thank the Coastal and Estuarine Habitat Restoration Trust Fund and the US Fish and Wildlife Service Coastal Program for funding to develop and implement the assessment method. We also would like to thank interns and volunteers who assisted us with the protocol. A NOAA Coastal and Climate Applications (COCA) award to the RI Coastal Resources Management Council supported the SLAMM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Burke Watson.

Additional information

Communicated by John C. Callaway

Electronic Supplementary Material

ESM 1

(DOCX 222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cole Ekberg, M.L., Raposa, K.B., Ferguson, W.S. et al. Development and Application of a Method to Identify Salt Marsh Vulnerability to Sea Level Rise. Estuaries and Coasts 40, 694–710 (2017). https://doi.org/10.1007/s12237-017-0219-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-017-0219-0

Keywords

Navigation