Skip to main content

Advertisement

Log in

Estimating Total Alkalinity in the Washington State Coastal Zone: Complexities and Surprising Utility for Ocean Acidification Research

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Evidence of ocean acidification (OA) throughout the global ocean has galvanized some coastal communities to evaluate carbonate chemistry variations closer to home. An impediment to doing this effectively is that, often, only one carbonate system parameter is measured at a time, while two are required to fully constrain the inorganic carbon chemistry of seawater. In order to leverage the abundant single-carbonate-parameter datasets in Washington State for more rigorous OA research, we have characterized an empirical relationship between total alkalinity (TA) and salinity (TA = 47.7 × S + 647; 1σ = ±17 μmol kg−1) for regional surface waters (≤25 m) that is robust in the salinity range from 20 to 35 for all seasons. The relationship was evaluated using 5 years of 3-h contemporaneous observations of salinity, carbon dioxide partial pressure (pCO2), and pH from a surface mooring on the outer coast of Washington. In situ pCO2 observations and salinity-based estimates of TA were used to calculate pH for comparison with in situ pH measurements. On average, the calculated pH values were 0.02 units lower than the measured pH values across multiple pH sensor deployments and showed extremely high fidelity in tracking the measured high-frequency pH variations. Our results indicate that the TA-salinity relationship will be a useful tool for expanding single-carbonate-parameter datasets in Washington State and quality controlling dual pCO2-pH time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abril, G., S. Bouillon, F. Darchambeau, C.R. Teodoru, T.R. Marwick, F. Tamooh, F. Ochieng Omengo, et al. 2015. Technical note: large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 12: 67–78. doi:10.5194/bg-12-67-2015.

    Article  CAS  Google Scholar 

  • Adelsman, H., and L.W. Binder, eds., Washington State Blue Ribbon Panel on Ocean Acidification. 2012. Ocean acidification: from knowledge to action, Washington State’s strategic response. Olympia, Washington: Washington Department of Ecology. Publication No. 12-01-015.

  • Alin, S.R., R. Brainard, N. Price, J.A. Newton, A. Cohen, W. Peterson, E. DeCarlo, E. Shadwick, S. Noakes, and N. Bednaršek. 2015. Characterizing the natural system: toward sustained, integrated coastal ocean acidification observing networks to facilitate resource management and decision support. Oceanography 25: 92–107. doi:10.5670/oceanog.2015.34.

    Article  Google Scholar 

  • Bakker, D.C.E., B. Pfeil, K. Smith, S. Hankin, A. Olsen, S.R. Alin, C.E. Cosca, et al. 2014. An update to the surface ocean CO2 atlas (SOCAT version 2). Earth System Science Data 6: 69–90. doi:10.5194/essd-6-69-2014.

    Article  Google Scholar 

  • Barton, A., B. Hales, G.G. Waldbusser, C. Langdon, and R.A. Feely. 2012. The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: implications for near-term ocean acidification effects. Limnology and Oceanography 57: 698–710. doi:10.4319/lo.2012.57.3.0698.

    Article  CAS  Google Scholar 

  • Barton, A., G.G. Waldbusser, R.A. Feely, S.B. Weisberg, J.A. Newton, B. Hales, S. Cudd, et al. 2015. Impacts of coastal acidification on the Pacific northwest shellfish industry and adaptation strategies implemented in response. Oceanography 25: 146–159. doi:10.5670/oceanog.2015.38.

    Article  Google Scholar 

  • Bates, N.R., Y.M. Astor, M.J. Church, K. Currie, J.E. Dore, M. González-Dávila, L. Lorenzoni, F. Muller-Karger, J. Olafsson, and J.M. Santana-Casiano. 2014. A time-series view of changing surface ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography 27: 126–141. doi:10.5670/oceanog.2014.16.

    Article  Google Scholar 

  • Boehm, A.B., M.Z. Jacobson, M. O’Donnell, M. Sutula, W.W. Wakefield, S.B. Weisberg, and E. Whiteman. 2015. Ocean acidification science needs for natural resource managers of the north American west coast. Oceanography 25: 170–181. doi:10.5670/oceanog.2015.40.

    Article  Google Scholar 

  • Borges, A.V. 2011. Present day carbon dioxide fluxes in the coastal ocean and possible feedbacks under global change. In Oceans and the atmospheric carbon content, eds. Pedro Duarte, and J. Magdalena Santana-Casiano, 47–77. Dordrecht: Springer Netherlands. doi:10.1007/978-90-481-9821-4_3.

    Chapter  Google Scholar 

  • Byrne, R.H. 2014. Measuring ocean acidification: new technology for a new era of ocean chemistry. Environmental Science and Technology 48: 5352–5360. doi:10.1021/es405819p.

    Article  CAS  Google Scholar 

  • Caldeira, K., and M.E. Wickett. 2003. Anthropogenic carbon and ocean pH. Nature 425: 365–365. doi:10.1038/425365a.

    Article  CAS  Google Scholar 

  • Dickson, A.G. 1981. An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep Sea Research Part A. Oceanographic Research Papers 28: 609–623. doi:10.1016/0198-0149(81)90121-7.

    Article  CAS  Google Scholar 

  • Dickson, A.G. 1990. Standard potential of the reaction: AgCl(s) + 1/2H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. Journal of Chemical Thermodynamics 22: 113–127.

    Article  CAS  Google Scholar 

  • Dickson, A.G., C.L. Sabine, and J.R. Christian, ed. (2007) Guide to best practices for ocean CO 2 measurements. PICES Special Publication 3, 191 pp

  • Dickson AG (2010a) Seawater carbonate chemistry. In Guide to best practices for ocean acidification research and data reporting, eds. U. Riebesell, V. J. Fabry, L. Hansson and J.-P. Gattuso, 17–40. Luxembourg: Publications Office of the European Union.

  • Dickson, A.G. 2010b. Standards for ocean measurements. Oceanography 23: 34–47. doi:10.5670/oceanog.2010.22.

    Article  Google Scholar 

  • Dickson, A.G., and J.P. Riley. 1978. The effect of analytical error on the evaluation of the components of the aquatic carbon-dioxide system. Marine Chemistry 6: 77–85. doi:10.1016/0304-4203(78)90008-7.

    Article  CAS  Google Scholar 

  • Doney, S.C., V.J. Fabry, R.A. Feely, and J.A. Kleypas. 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1: 169–192. doi:10.1146/annurev.marine.010908.163834.

    Article  Google Scholar 

  • Evans, W., B. Hales, and P.G. Strutton. 2013. pCO2 distributions and air-water CO2. Estuarine, Coastal and Shelf Science 117: 260–272. doi:10.1016/j.ecss.2012.12.003.

    Article  CAS  Google Scholar 

  • Fabry, V.J., B.A. Seibel, R.A. Feely, and J.C. Orr. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65: 414–432. doi:10.1093/icesjms/fsn048.

    Article  CAS  Google Scholar 

  • Fabry, V.J., J. McClintock, J.T. Mathis, and J. Grebmeier. 2009. Ocean acidification at high latitudes: the bellwether. Oceanography 22: 160–171. doi:10.5670/oceanog.2009.105.

    Article  Google Scholar 

  • Fassbender, A.J. 2014. New approaches to study the marine carbon cycle. PhD dissertation, University of Washington. Proquest, 1/11/2016. http://hdl.handle.net/1773/27552.

  • Fassbender, A.J., C.L. Sabine, N. Lawrence-Slavas, E.H. De Carlo, C. Meinig, and S. Maenner-Jones. 2015. Robust sensor for extended autonomous measurements of surface ocean dissolved inorganic carbon. Environmental Science & Technology 49: 3628–3635. doi:10.1021/es5047183.

    Article  CAS  Google Scholar 

  • Fassbender, A.J., C.L. Sabine, and M.F. Cronin. 2016a. Net community production and calcification from 7 years of NOAA station Papa mooring measurements. Global Biogeochemical Cycles 30: 250–267. doi:10.1002/2015GB005205.

    Article  CAS  Google Scholar 

  • Fassbender, A.J., C.L. Sabine, and K.M. Feifel. 2016b. Consideration of coastal carbonate chemistry in understanding biological calcification. Geophysical Research Letters: 1–10. doi:10.1002/2016GL068860.

  • Feely, R.A., and C.L. Sabine. 2011. Carbon dioxide and hydrographic measurements during the 2007 NACP west coast cruise. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee. doi:10.3334/CDIAC/otg.CLIVAR_NACP_West_Coast_Cruise_2007.

    Google Scholar 

  • Feely, R.A., R. Wanninkhof, H.B. Milburn, C.E. Cosca, M. Stapp, and P.P. Murphy. 1998. A new automated underway system for making high precision pCO2 measurements onboard research ships. Analytica Chimica Acta 377: 185–191. doi:10.1016/S0003-2670(98)00388-2.

    Article  CAS  Google Scholar 

  • Feely, R.A., C.L. Sabine, K. Lee, W. Berelson, J.A. Kleypas, V.J. Fabry, and F.J. Millero. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305: 362–366. doi:10.1126/science.1097329.

    Article  CAS  Google Scholar 

  • Feely, R.A., C.L. Sabine, J.M. Hernandez-Ayon, D. Ianson, and B. Hales. 2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320: 1490–1492. doi:10.1126/science.1155676.

    Article  CAS  Google Scholar 

  • Feely, R.A., S.R. Alin, J.A. Newton, C.L. Sabine, M. Warner, A. Devol, C. Krembs, and C. Maloy. 2010. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuarine, Coastal and Shelf Science 88: 442–449. doi:10.1016/j.ecss.2010.05.004.

    Article  CAS  Google Scholar 

  • Feely, R.A., S.R. Alin, B. Hales, G. Johnson, L. Juranek, R.H. Byrne, W. Peterson, M. Goni, X. Liu, and D. Greeley. 2014a. Carbon dioxide, hydrographic and chemical measurements onboard R/V Wecoma during the NOAA PMEL west coast ocean acidification cruise WCOA2011 (august 12 - 30, 2011). Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee. doi:10.3334/CDIAC/OTG.COAST_WCOA2011.

    Google Scholar 

  • Feely, R.A., S.R. Alin, B. Hales, G. Johnson, L. Juranek, R.H. Byrne, W. Peterson, and D. Greeley. 2014b. Carbon dioxide, hydrographic and chemical measurements onboard R/V bell M. Shimada during the NOAA PMEL west Coast Ocean acidification cruise WCOA2012 (September 4–17, 2012). Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee. doi:10.3334/CDIAC/OTG.COAST_WCOA2012.

    Google Scholar 

  • Feely, R.A., S.R. Alin, B. Hales, G.C. Johnson, R.H. Byrne, W.T. Peterson, X. Liu, and D. Greeley. 2015. Chemical and hydrographic profile measurements during the west coast ocean acidification cruise WCOA2013 (august 3-29, 2013). Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee. doi:10.3334/CDIAC/OTG.COAST_WCOA2013.

    Google Scholar 

  • Friis, K., A. Kortzinger, and D.W.R. Wallace. 2003. The salinity normalization of marine inorganic carbon chemistry data. Geophysical Research Letters. doi:10.1029/2002GL015898.

    Google Scholar 

  • Fry, C.H., T. Tyrrell, M.P. Hain, N.R. Bates, and E.P. Achterberg. 2015. Analysis of global surface ocean alkalinity to determine controlling processes. Marine Chemistry 174 : 46–57. doi:10.1016/j.marchem.2015.05.003.Elsevier B.V

    Article  CAS  Google Scholar 

  • Gray, S.E.C., M.D. DeGrandpre, T.S. Moore, T.R. Martz, G. Friederich, and K.S. Johnson. 2011. Applications of in situ pH measurements for inorganic carbon calculations. Marine Chemistry 125 : 82–90. doi:10.1016/j.marchem.2011.02.005.Elsevier B.V

    Article  Google Scholar 

  • Hernandez-Ayon, J.M., A. Zirino, A.G. Dickson, T. Camiro-Vargas, and E. Valenzuela. 2007. Estimating the contribution of organic bases from microalgae to the titration alkalinity in coastal seawaters. Limnology and Oceanography: Methods 5: 225–232. doi:10.4319/lom.2007.5.225.

    Article  CAS  Google Scholar 

  • Hickey, B.M., and N.S. Banas. 2008. Why is the northern end of the California current system so productive? Oceanography 21: 90–107.

    Article  Google Scholar 

  • Hickey, B., S. Geier, N. Kachel, and A. MacFadyen. 2005. A bi-directional river plume: the Columbia in summer. Continental Shelf Research 25: 1631–1656. doi:10.1016/j.csr.2005.04.010.

    Article  Google Scholar 

  • Hofmann, G.E., J.E. Smith, K.S. Johnson, U. Send, L.A. Levin, F. Micheli, A. Paytan, et al. 2011. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PloS One 6: e28983. doi:10.1371/journal.pone.0028983.

    Article  CAS  Google Scholar 

  • Hu, Xinping, Jennifer Beseres Pollack, Melissa R. Mccutcheon, Paul A. Montagna, and Zhangxian Ouyang. 2015. Long-term alkalinity decrease and acidification of estuaries in northwestern Gulf of Mexico. Environmental Science & Technology 49: 3401–3409. doi:10.1021/es505945p.

    Article  CAS  Google Scholar 

  • Hunt, C.W., J.E. Salisbury, and D. Vandemark. 2011. Contribution of non-carbonate anions to total alkalinity and overestimation of pCO2 in New England and New Brunswick rivers. Biogeosciences 8: 3069–3076. doi:10.5194/bg-8-3069-2011.

    Article  CAS  Google Scholar 

  • Juranek, L.W., R.A. Feely, D. Gilbert, H.J. Freeland, and L.A. Miller. 2011. Real-time estimation of pH and aragonite saturation state from Argo profiling floats: prospects for an autonomous carbon observing strategy. Geophysical Research Letters 38 . doi:10.1029/2011GL048580.n/a–n/a

  • Kelly, R.P., M.M. Foley, W.S. Fisher, R.A. Feely, B.S. Halpern, G.G. Waldbusser, and M.R. Caldwell. 2011. Mitigating local causes of ocean acidification with existing Laws. Science 332: 1036–1037. doi:10.1126/science.1203815.

    Article  CAS  Google Scholar 

  • Kim, Hyun-Cheol, K. Lee, and Wonyong Choi. 2006. Contribution of phytoplankton and bacterial cells to the measured alkalinity of seawater. Limnology and Oceanography 51: 331–338. doi:10.4319/lo.2006.51.1.0331.

    Article  CAS  Google Scholar 

  • Kuliński, K., B. Schneider, K. Hammer, U. Machulik, and D. Schulz-Bull. 2014. The influence of dissolved organic matter on the acid-base system of the Baltic Sea. Journal of Marine Systems 132: 106–115. doi:10.1016/j.jmarsys.2014.01.011.

    Article  Google Scholar 

  • Lauvset, S.K., N. Gruber, P. Landschützer, A. Olsen, and J. Tjiputra. 2015. Trends and drivers in global surface ocean pH over the past 3 decades. Biogeosciences 12: 1285–1298. doi:10.5194/bg-12-1285-2015.

    Article  CAS  Google Scholar 

  • Lee, K., L.T. Tong, F.J. Millero, C.L. Sabine, A.G. Dickson, C. Goyet, G.H. Park, R. Wanninkhof, R.A. Feely, and R.M. Key. 2006. Global relationships of total alkalinity with salinity and temperature in surface waters of the world’s oceans. Geophysical Research Letters 33: L19605. doi:10.1029/2006GL027207.

    Article  Google Scholar 

  • Lewis E Wallace DWR (1998) MATLAB program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee

  • Liu, X., M.C. Patsavas, and R.H. Byrne. 2011. Purification and characterization of meta-cresol purple for spectrophotometric seawater pH measurements. Environmental Science & Technology 45: 4862–4868. doi:10.1021/es200665d.

    Article  CAS  Google Scholar 

  • Lueker, T.J., A.G. Dickson, and C.D. Keeling. 2000. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Marine Chemistry 70: 105–119. doi:10.1016/S0304-4203(00)00022-0.

    Article  CAS  Google Scholar 

  • Martz, T., K. Daly, R.H. Byrne, J. Stillman, and D. Turk. 2015. Technology for ocean acidification research: needs and availability. Oceanography 25: 40–47. doi:10.5670/oceanog.2015.30.

    Article  Google Scholar 

  • McLaughlin, K., S.B. Weisberg, A.G. Dickson, G.E. Hofmann, J.A. Newton, D. Aseltine-Neilson, A. Barton, et al. 2015. Core principles of the California current acidification network: linking chemistry, physics, and ecological effects. Oceanography 25: 160–169. doi:10.5670/oceanog.2015.39.

    Article  Google Scholar 

  • Millero, F.J. 2007. The marine inorganic carbon cycle. Chemical Reviews 107: 308–341. doi:10.1021/cr0503557.

    Article  CAS  Google Scholar 

  • Mucci, A. 1983. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. American Journal of Science 283: 780–799. doi:10.2475/ajs.283.7.780.

    Article  CAS  Google Scholar 

  • Muller, François L.L., and Bjørn Bleie. 2008. Estimating the organic acid contribution to coastal seawater alkalinity by potentiometric titrations in a closed cell. Analytica Chimica Acta 619: 183–191. doi:10.1016/j.aca.2008.05.018.

    Article  CAS  Google Scholar 

  • Newton JA, Feely RA, Jewett EB, Williamson P, Mathis JT (2014) Global ocean acidification observing network: requirements and governance plan

  • Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, et al. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437: 681–686. doi:10.1038/nature04095.

    Article  CAS  Google Scholar 

  • Pfeil, B., A. Olsen, D.C.E. Bakker, S. Hankin, H. Koyuk, A. Kozyr, J. Malczyk, et al. 2013. A uniform, quality controlled surface ocean CO2 atlas (SOCAT). Earth System Science Data 5: 125–143. doi:10.5194/essd-5-125-2013.

    Article  Google Scholar 

  • Pierrot, D., C. Neill, K. Sullivan, R.D. Castle, R. Wanninkhof, Lüger Heike, T. Johannessen, A. Olsen, R.A. Feely, and C.E. Cosca. 2009. Recommendations for autonomous underway pCO2 measuring systems and data-reduction routines. Deep-Sea Research Part II: Topical Studies in Oceanography 56: 512–522. doi:10.1016/j.dsr2.2008.12.005.

    Article  Google Scholar 

  • Raymond, P.A., and J.J. Cole. 2003. Increase in the export of alkalinity from North America’s largest river. Science 301.

  • Raymond, P.A., N.-H. Oh, R.E. Turner, and W. Broussard. 2008. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451: 449–452. doi:10.1038/nature06505.

    Article  CAS  Google Scholar 

  • Rhein, M., S.R. Rintoul, S. Aoki, E. Campos, D. Chambers, R.A. Feely, S. Gulev, et al. 2013. Observations: ocean. In Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, eds. T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley. Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • Sabine CL, Ducklow HW (2010) International carbon coordination: Roger Revelle’s legacy in the intergovernmental oceanographic commission 23: 48–61

  • Sabine, C.L., S. Hankin, H. Koyuk, D.C.E. Bakker, B. Pfeil, A. Olsen, N. Metzl, et al. 2013. Surface ocean CO2 atlas (SOCAT) gridded data products. Earth System Science Data 5: 145–153. doi:10.5194/essd-5-145-2013.

    Article  Google Scholar 

  • Sutton, A.J., C.L. Sabine, S. Maenner-Jones, S. Musielewicz, R. Bott, and J. Osborne. 2011. High-resolution ocean and atmosphere pCO2 time-series measurements from mooring LaPush_125W_48N. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee. doi:10.3334/CDIAC/otg.TSM_LaPush_125W_48N.

    Google Scholar 

  • Sutton, A.J., R.A. Feely, C.L. Sabine, M.J. McPhaden, T. Takahashi, F.P. Chavez, G. Friederich, and J.T. Mathis. 2014a. Natural variability and anthropogenic change in equatorial Pacific surface ocean pCO2 and pH. Global Biogeochemical Cycles 28: 131–145. doi:10.1002/2013GB004679.

    Article  CAS  Google Scholar 

  • Sutton, A.J., C.L. Sabine, S. Maenner-Jones, N. Lawrence-Slavas, C. Meinig, R.A. Feely, J.T. Mathis, et al. 2014b. A high-frequency atmospheric and seawater pCO2 data set from 14 open ocean sites using a moored autonomous system. Earth System Science Data 6: 353–366. doi:10.5194/essdd-7-385-2014.

    Article  Google Scholar 

  • Sutton, A.J., C.L. Sabine, R.A. Feely, W.-J. Cai, M.F. Cronin, Michael J. McPhaden, J.M. Morell, et al. 2016. Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside pre-industrial bounds. Biogeosciences Discussions: 1–30. doi:10.5194/bg-2016-104.

  • Takahashi, T., S.C. Sutherland, D.W. Chipman, J.G. Goddard, and C. Ho. 2014. Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Marine Chemistry 164: 95–125. doi:10.1016/j.marchem.2014.06.004.

    Article  CAS  Google Scholar 

  • Takeshita, Y., C.A. Frieder, T.R. Martz, J.R. Ballard, R.A. Feely, S. Kram, S. Nam, M.O. Navarro, N.N. Price, and J.E. Smith. 2015. Including high-frequency variability in coastal ocean acidification projections. Biogeosciences 12: 5853–5870. doi:10.5194/bg-12-5853-2015.

    Article  Google Scholar 

  • Uppstrom, L.R. 1974. The boron-chlorinity ratio of deep seawater from the Pacific Ocean. Deep-Sea Research Part I 21: 161–162.

    CAS  Google Scholar 

  • van Heuven, S., D. Pierrot, J.W.B. Rae, E. Lewis, and D.W.R. Wallace. 2011. MATLAB program developed for CO2 system calculations. ORNL/CDIAC-105b. ORNL/CDIAC-105b. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee. doi:10.3334/CDIAC/otg.CO2SYS_MATLAB_v1.1.

    Google Scholar 

  • Waldbusser, G.G., and J.E. Salisbury. 2014. Ocean acidification in the coastal zone from an organism’s perspective: multiple system parameters, frequency domains, and habitats. Annual Review of Marine Science 6: 221–247. doi:10.1146/annurev-marine-121211-172238.

    Article  Google Scholar 

  • Waldbusser, G.G., B. Hales, C.J. Langdon, B.A. Haley, P. Schrader, E.L. Brunner, M.W. Gray, C.A. Miller, and I. Gimenez. 2014. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nature Climate Change 5: 273–280. doi:10.1038/nclimate2479.

    Article  Google Scholar 

  • Wolf-Gladrow, D.A., R.E. Zeebe, C. Klaas, A. Kortzinger, and A.G. Dickson. 2007. Total alkalinity: the explicit conservative expression and its application to biogeochemical processes. Marine Chemistry 106: 287–300. doi:10.1016/j.marchem.2007.01.006.

    Article  CAS  Google Scholar 

  • Wootton, T.J., and C.A. Pfister. 2012. Carbon system measurements and potential climatic drivers at a site of rapidly declining ocean pH. Edited by Wei-Chun chin. PloS One 7: e53396. doi:10.1371/journal.pone.0053396.

    Article  Google Scholar 

  • Xue, L., W.-J. Cai, X. Hu, C.L. Sabine, S. Jones, A.J. Sutton, L.-Q. Jiang, and J.J. Reimer. 2016. Sea surface carbon dioxide at the Georgia time series site (2006–2007): air–sea flux and controlling processes. Progress in Oceanography 140 : 14–26. doi:10.1016/j.pocean.2015.09.008.Elsevier Ltd

    Article  Google Scholar 

  • Yang, Bo, R.H. Byrne, and Michael Lindemuth. 2015. Contributions of organic alkalinity to total alkalinity in coastal waters: a spectrophotometric approach. Marine Chemistry 176 : 199–207. doi:10.1016/j.marchem.2015.09.008.Elsevier B.V

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the crew and science parties on all cruises that contributed to this work, which represent University of Washington (UW) Puget Sound Regional Synthesis Model (PRISM) program, Northwest Association of Regional Ocean Observing Systems (NANOOS), and Washington Ocean Acidification Center (WOAC) cruises focused on Washington waters, as well as NOAA’s West Coast Ocean Acidification cruises and NOAA Fisheries-led PacOOS cruises focused on the outer coast. We are grateful to Beth Curry for her efforts in compiling and quality controlling the UW cruise data. The moored time series observations benefited from the technical expertise of John Mickett, Sylvia Musielewicz, and Randy Bott. Funding for cruise and mooring observations used in this paper came from the NOAA Ocean Acidification Program, NOAA Global Carbon Cycle Program, NOAA Climate Observation Division in the Climate Program Office, NOAA Fisheries, US Integrated Ocean Observing System (IOOS) through NANOOS, Washington State funded WOAC, and UW PRISM Program. The authors were supported by the Postdocs Applying Climate Expertise (PACE) Fellowship Program, partially funded by the NOAA Climate Program Office and administered by the UCAR Visiting Scientist Programs; NOAA Pacific Marine Environmental Laboratory; WOAC and NANOOS via US IOOS. This manuscript benefitted from the input of three anonymous reviewers and is PMEL contribution number 4473.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea J. Fassbender.

Additional information

Communicated by Alberto Vieira Borges

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fassbender, A.J., Alin, S.R., Feely, R.A. et al. Estimating Total Alkalinity in the Washington State Coastal Zone: Complexities and Surprising Utility for Ocean Acidification Research. Estuaries and Coasts 40, 404–418 (2017). https://doi.org/10.1007/s12237-016-0168-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-016-0168-z

Keywords

Navigation