Skip to main content
Log in

Tide-Induced Variations in the Fatty Acid Composition of Estuarine Particulate Organic Matter

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The particulate organic matter (POM) in hydrodynamically variable habitats such as the lower reaches of estuaries can change in its content and quality on very short time scales (example, hourly), and these changes can potentially influence higher-level consumers in river-estuary-marine systems. Estuarine water samples were collected hourly for 12 h downstream in a small river to evaluate the fatty acid composition of POM over a tidal cycle. Fatty acid constituents of POM collected during the flood tide were dominated by the saturated, higher plant and bacterial fatty acids, whereas unsaturated, polyunsaturated, essential, and diatom-associated fatty acids dominated the POM collected during the ebb tide. Elevated algal biomass (as indicated by high chlorophyll a concentrations), diatom, and freshness indices in the POM indicated enhanced fresh autochthonous-origin materials that dominated the mixed organic pool during the ebb tide compared to more degraded detritus during the flood tide. Tidal retention of organic matter and algal primary production were the most influential factors that differentiated the fatty acid composition of estuarine POM over the short time scale. The results of this study have important implications on the quality of POM at the time of sampling, especially in estuaries where mixed organic pools have multiple inputs and are strongly influenced by tidal cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abed R.M.M., K. Kohls, R. Schoon, A.K. Scherf, M. Schacht, K.A. Palinska, H. Al Hassani, W. Hamza, J. Rullkötter, and S. Golubic. 2008. Lipid biomarkers, pigments and cyanobacterial diversity of microbial mats across intertidal flats of the arid coast of the Arabian Gulf (Abu Dhabi, UAE). FEMS Microbial Ecology 65: 449–462.

    Article  CAS  Google Scholar 

  • Ackman R.G. 1999. Comparison of lipids in marine and freshwater organisms. In Lipids in freshwater ecosystems, eds. M.T. Arts, andB.C. Wainman, 263–289. New York: Springer–Verlag Inc.

  • Ahlgren G., T. Vrede, and W. Goedkoop. 2009. Fatty acid ratios in freshwater fish, zooplankton and zoobenthos—are there specific optima? In Lipids in aquatic ecosystems, eds. M.T. Arts, M.T. Brett, and M.J. Kainz, 147–178. London New York: Springer Science + Business Media, LLC.

    Chapter  Google Scholar 

  • Antonio E.S., A. Kasai, M. Ueno, Y. Kurikawa, K. Tsuchiya, H. Toyohara, Y. Ishihi, H. Yokoyama, and Y. Yamashita. 2010. Consumption of terrestrial organic matter by estuarine molluscs determined by analysis of their stable isotopes and cellulase activity. Estuarine Coastal and Shelf Science 86: 401–407. doi:10.1016/j.ecss.2009.05.010.

    Article  CAS  Google Scholar 

  • Antonio E.S., A. Kasai, M. Ueno, Y. Ishihi, H. Yokoyama, and Y. Yamashita. 2012. Spatio–temporal feeding dynamics of benthic communities in an estuary–marine gradient. Estuarine Coastal and Shelf Science 112: 86–97. doi:10.1016/j.ecss.2011.11.017.

    Article  CAS  Google Scholar 

  • Antonio E.S., and N.B. Richoux. 2014. Trophodynamics of three decapod crustaceans in a temperate estuary using stable isotope and fatty acid analyses. Marine Ecology Progress Series 504: 193–205. doi:10.3354/meps10761.

    Article  Google Scholar 

  • Belicka L.L., D. Burkholder, J.W. Fourqurean, M.R. Heithaus, S.A. Macko, and R. Jaffé. 2012. Stable isotope and fatty acid biomarkers of seagrass, epiphytic, and algal organic matter to consumers in a pristine seagrass ecosystem. Marine and Freshwater Research 63: 1085–1097.

    Article  CAS  Google Scholar 

  • Bergamino L., T. Dalu, and N.B. Richoux. 2014. Evidence of spatial and temporal changes in sources of organic matter in estuarine sediments: stable isotope and fatty acid analyses. Hydrobiologia 732: 135–145. doi:10.1007/s10750-014-1853-1.

    Article  Google Scholar 

  • Bodineau L., G. Thoumelin, V. Béghin, and M. Wartel. 1998. Tidal time-scale changes in the composition of particulate organic matter within the estuarine turbidity maximum zone in the macrotidal Seine estuary, France: the use of fatty acid and sterol biomarkers. Estuarine Coastal and Shelf Science 47: 37–49.

    Article  CAS  Google Scholar 

  • Bouillon S., J.J. Middelburg, F. Dehairs, A.V. Borges, G. Abril, M.R. Flindt, S. Ulomi, and E. Kristensen. 2007. Importance of intertidal sediment processes and porewater exchange on the water column biogeochemistry in a pristine mangrove creek (Ras Dege, Tanzania). Biogeosciences 4: 311–322.

    Article  CAS  Google Scholar 

  • Budge S.M., and C.C. Parrish. 1998. Lipid biochemistry of plankton, settling matter and sediments in Trinity Bay. Newfoundland. II. Fatty acids. Organic Geochemistry 29: 1547–1559.

    Article  CAS  Google Scholar 

  • Budge S.M., C.C. Parrish, and C.H. Mckenzie. 2001. Fatty acid composition of phytoplankton, settling particulate matter and sediments at a sheltered bivalve aquaculture site. Marine Chemistry 76: 285–303. doi:10.1016/S0304-4203(01)00068-8.

    Article  CAS  Google Scholar 

  • Canuel E.A. 2001. Relations between river flow, primary production and fatty acid composition of particulate organic matter in San Francisco and Chesapeake Bays: a multivariate approach. Organic Geochemistry 32: 563–583.

    Article  CAS  Google Scholar 

  • Canuel E.A., J.E. Cloern, D.B. Ringerberg, J.B. Guckert, and G.H. Rau. 1995. Molecular and isotopic tracers used to examine sources of organic matter and its incorporation into the food webs of San Francisco Bay. Limnology and Oceanography 40: 67–81.

    Article  CAS  Google Scholar 

  • Canuel E.A., and C.S. Martens. 1993. Seasonal variations in the sources and alteration of organic matter associated with recently-associated sediments. Organic Geochemistry 20: 563–577.

    Article  CAS  Google Scholar 

  • Caramujo M.J., H.T.S. Boschker, and W. Admiraal. 2008. Fatty acid profiles of algae mark the development and composition of harpacticoid copepods. Freshwater Biology 53: 77–90.

    CAS  Google Scholar 

  • Countway R.E., E.A. Canuel, and R.M. Dickhut. 2007. Sources of particulate organic matter in surface waters of the York River, VA estuary. Organic Geochemistry 38: 365–379. doi:10.1016/j.orggeochem.2006.06.004.

    Article  CAS  Google Scholar 

  • Currin C.A., S.Y. Newell, and H.W. Paerl. 1995. The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs: considerations based on multiple stable analysis. Marine Ecology Progress Series 121: 99–116.

    Article  Google Scholar 

  • Fischer A.M., J.P. Ryan, C. Levesque, and N. Welschmeyer. 2014. Characterizing estuarine plume discharge into the coastal ocean using fatty acid biomarkers and pigment analysis. Marine Environmental Research 99: 106–116. doi:10.1016/j.marenveres.2014.04.006.

    Article  CAS  Google Scholar 

  • Geyer W.R., and D.M. Farmer. 1989. Tide-induced variation of the dynamics of a salt wedge estuary. Journal of Physical Oceanography 19: 1060–1973.

    Article  Google Scholar 

  • Hammer Ø., D.A.T. Harper, and P.D. Ryan. 2001. PAST: palaeontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 9.

    Google Scholar 

  • Heinecken, T.H.E., and J.R. Grindley. 1982. Estuaries of the Cape. In Synopses of available information on individual systems, Part 2, ed A.E.F. Heydorn, and J.R. Grindley, Report No. ss10 Kowie (CSE10), CSIR Report 409, Capetown, South Africa: Creda Press.

  • Indarti E., M.I.A. Majid, R. Hashim, and A. Chong. 2005. Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. Journal of Food Composition and Analysis 18: 161–170.

    Article  CAS  Google Scholar 

  • Jeffé R., G.A. Wolff, A.C. Cabrera, and H.C. Chitty. 1995. The biogeochemistry of lipids in rivers of the Orinoco Basin. Geochimica et Cosmochimica Acta 59: 4507–4522.

    Article  Google Scholar 

  • Kaneda T. 1991. Iso-fatty and anteiso-fatty acids in bacteria—biosynthesis, function and taxonomic significance. Microbiology Review 55: 288–302.

    CAS  Google Scholar 

  • Kawamura K.A., and I.R. Kaplan. 1983. Organic compounds in the rainwater of Los Angeles. Environmental Science and Technology 17: 497–501.

    Article  CAS  Google Scholar 

  • McCallister S.L., J.E. Bauer, H.W. Ducklow, and E.A. Canuel. 2006. Sources of estuarine dissolved and particulate organic matter: a multi–tracer approach. Organic Geochemistry 37: 454–468. doi:10.1016/j.orggeochem.2005.12.005.

    Article  CAS  Google Scholar 

  • McManus J. 2005. Salinity and suspended matter variations in the Tay estuary. Continental Shelf Research 25: 729–747. doi:10.1016/j.csr.2004.11.003.

    Article  Google Scholar 

  • Richoux N.B., and R.T. Ndhlovu. 2014. Temporal shifts in the fatty acid profiles of rocky intertidal invertebrates. Marine Biology 161: 2199–2211. doi:10.1007/s00227-014-2481-z.

    Article  CAS  Google Scholar 

  • Richoux N.B., I. Vermeulen, and P.W. Froneman. 2014. Fatty acid profiles reveal temporal and spatial differentiation in diets within and among synoptic rocky shore suspension–feeders. Marine Ecology Progress Series 495: 143–160.

    Article  CAS  Google Scholar 

  • Rueda J.L., and A.C. Smaal. 2002. Physiological response of Spisula subtruncata (da Costa, 1778) to different seston quantity and quality. Hydrobiologia 475(476): 505–511.

    Article  Google Scholar 

  • Sakdullah A., and M. Tsuchiya. 2009. The origin of particulate organic matter and the diet of tilapia from an estuarine ecosystem subjected to domestic wastewater discharge: fatty acid analysis approach. Aquatic Ecology 43: 577–589.

    Article  CAS  Google Scholar 

  • Thoumelin G., L. Bodineau, and M. Wartel. 1997. Origin and transport of organic matter across the Seine Estuary: fatty acid and sterol variations. Marine Chemistry 58: 59–71.

    Article  CAS  Google Scholar 

  • Volkman J.K., S.W. Jeffrey, P.D. Nichols, G.I. Rogers, and C.D. Garland. 1989. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology 128: 219–240. doi:10.1016/0022-0981(89)90029-4.

    Article  CAS  Google Scholar 

  • Vorwerk P.D., and P.W. Froneman. 2009. The importance of estuarine-derived carbon for the nearshore marine environment: studies on two contrasting South African estuaries. African Journal of Aquatic Science 34: 137–146.

    Article  CAS  Google Scholar 

  • Wakeham S.G., and E.A. Canuel. 1990. Fatty acids and sterols of particulate matter in brackish and seasonally anoxic coastal salt pond. Advances in Organic Geochemistry 16: 703–713.

    Article  CAS  Google Scholar 

  • Watanabe, K., A. Kasai, E.A. Antonio, K. Suzuki, M. Ueno, and Y. Yamashita. 2014. Influence of salt–wedge intrusion on ecological processes at lower trophic levels in the Yura Estuary, Japan. Estuarine Coastal and Shelf Science 139: 67–77. http://dx.doi.org/10.1016/j.ecss.2013.12.018.

  • Xu Y., and R. Jaffé. 2007. Lipid biomarkers in suspended particles from a subtropical estuary: assessment of seasonal changes in sources and transport of organic matter. Marine Environmental Research 64: 666–678. doi:10.1016/j.marenvres.2007.07.004.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

E.S.A. and the research were funded by the South African National Research Foundation and Rhodes University. The comments and suggestions by the anonymous reviewers and the editor that greatly improved the quality of this paper are greatly appreciated. We are grateful to Mr. and Mrs. Tyson for the use of their backyard as our temporary field laboratory in Port Alfred. We thank G. Schaal and R.T. Ndhlovu for the assistance during sampling and B. Hubbart, L. Chari and S. Moyo for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily S. Antonio.

Additional information

Communicated by Marianne Holmer

Electronic Supplementary Material

Supplemental Table 1

(DOCX 158 kb)

Supplemental Table 2

(DOCX 154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonio, E.S., Richoux, N.B. Tide-Induced Variations in the Fatty Acid Composition of Estuarine Particulate Organic Matter. Estuaries and Coasts 39, 1072–1083 (2016). https://doi.org/10.1007/s12237-015-0049-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-015-0049-x

Keywords

Navigation