Skip to main content

Advertisement

Log in

Extreme pH Conditions at a Natural CO2 Vent System (Italy) Affect Growth, and Survival of Juvenile Pen Shells (Pinna nobilis)

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Predicted pH decreases in ocean surface waters of ~0.3–0.5 and 0.7–0.8 pH units (for 2100 and 2300, respectively) are expected to negatively affect calcification processes and physiological performances of many marine organisms. Here we evaluated the response of important parameters such as growth, mortality, oxygen consumption, and mineralization of transplanted Pinna nobilis juveniles in the naturally acidified waters of a CO2 vent system. Our field experiments show a general decrease of physiological responses of juveniles for the studied parameters along a decreasing pH gradient, even if significant effects are only observed under pH values of 7.6 units (“extreme” pH). In particular, the mortality rate increased from 10–30 % over the study period at control conditions to 60–70 % at extreme pH values. We conclude that near-future decreases in pH (decreases of 0.3–0.5 pH units) may not have a significant effect on performance of P. nobilis juveniles, while predicted longer-term decreases (decreases of 0.7–0.8 pH units) could affect the survival of the species. The combination of laboratory experiments with the assessment of naturally acidified environments can provide further insights into the threshold pH affecting the performance of vulnerable marine species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Addadi, L., and S. Weiner. 1992. Control and design principles in biological mineralization. Angewandte Chemie Int. Ed 31(2): 153–169.

    Article  Google Scholar 

  • Andersen, S., E.S. Grefsrud, and T. Harboe. 2013. Effect of increased pCO2 on early shell development in great scallop (Pecten maximus Lamark) larvae. Biogeosciences Discussions 10: 3281–3310.

    Article  Google Scholar 

  • Andersson, A.J., F.T. Mackenzie, and J.-P. Gattuso. 2011. Effects of ocean acidification on benthic processes, organisms, and ecosystems. In Ocean acidification, ed. J.-P. Gattuso and L. Hansson, 122–153. Oxford: Oxford University Press.

    Google Scholar 

  • Anthony, K.R.N., D.I. Kline, G. Diaz-Pulido, S. Dove, and O. Hoegh-Guldberg. 2008. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences of the United States of America 105: 17442–17446.

    Article  CAS  Google Scholar 

  • Aufdenkampe, A.K., E. Mayorga, P.A. Raymond, J.M. Melack, S.C. Doney, S.R. Alin, R.E. Aalto, and K. Yoo. 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment 9(1): 53e60.

    Article  Google Scholar 

  • Bosc, E., A Bricaud, D. Antoine. 2004. Seasonal and interannual variability in algal biomass and primary productionin the Mediterranean Sea, as derived from 4 years of Sea- WiFS observations. Global Biogeochemical Cy.18. GB1005. doi:10.1029/2003GB002034.

  • Brennand, H.S., N. Soars, S.A. Dworjanyn, A.R. Davis, and M. Byrne. 2010. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS ONE 5: 7.

    Google Scholar 

  • Bressan, M., A. Chinellato, M. Munari, V. Matozzo, A. Manci, T. Marčeta, L. Finos, I. Moro, P. Pastore, D. Badocco, and M.G. Marin. 2014. Marine Environmental Research 99: 136–14.

    Article  CAS  Google Scholar 

  • Broecker, W.S., and T. Takahash. 1966. Calcium carbonate precipitation on bahama banks. Journal of Geophysical Research 71: 1575–1602.

    Article  CAS  Google Scholar 

  • Buapet, P., M. Gullström, and M. Björk. 2013. Photosynthetic activity of seagrasses and macroalgae in temperate shallow waters can alter seawater pH and total inorganic carbon content at the scale of a coastal embayment. Marine and Freshwater Research 64: 1040–1048. doi:10.1071/MF12124.

  • Cabanellas-Reboredo, M., S. Deudero, J. Alos, J.M. Valencia, D. March, I.E. Hendriks, and E. Alvarez. 2009. Recruitment of Pinna nobilis (Mollusca: Bivalvia) on artificial structures. Marine Biodiversity Records. Marine Biological Association of the United Kingdom 2: 1–5.

    Google Scholar 

  • Caldeira, K., and M.E. Wickett. 2005. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Journal of Geophysical Research 110: C09S04.

    Article  Google Scholar 

  • Calosi, P., S.P.S. Rastrick, M. Graziano, S.C. Thomas, C. Baggini, H.A. Carter, J.M. Hall-Spencer, M. Milazzo, and J.I. Spicer. 2013. Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid–base and ion-regulatory abilities. Marine Pollution Bulletin 73: 470–484.

    Article  CAS  Google Scholar 

  • Carritt, D.E., and J.H. Carpenter. 1966. Comparison and evaluation of currently employed modifications of Winkler method for determining dissolved oxygen in seawater - a nasco report. Journal of Marine Research 24: 286–318.

    CAS  Google Scholar 

  • Centoducati, G., E. Tarsitano, A. Bottalico, M. Marvulli, O.R. Lai, and G. Crescenzo. 2007. Monitoring of the endangered Pinna nobilis Linnaeus, 1758 in the Mar Grande of Taranto (Ionian sea, Italy). Environmental Monitoring and Assessment 131: 339–347.

    Article  Google Scholar 

  • Chiarore, A., and F.P. Patti. 2013. Molluschi associati all’alga bruna Sargassum vulgare (C. Agardh, 1820) (Fucales Sargassaceae) rinvenuti lungo le coste dell’isola d’Ischia (Napoli): check-list preliminare. Notiziario SIM 31(2): 10–11.

    Google Scholar 

  • Cigliano, M., M.C. Gambi, R. Rodolfo-Metalpa, F.P. Patti, and J.M. Hall-Spencer. 2010. Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents. Marine Biology 157: 2489–2502.

    Article  Google Scholar 

  • Comeau, S., G. Gorsky, R. Jeffree, J.L. Teyssie, and J.P. Gattuso. 2009. Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina). Biogeosciences 6: 1877.

    Article  CAS  Google Scholar 

  • Crook, E.D., D. Potts, M. Rebolledo-Vieyra, L. Hernandez, and A. Paytan. 2012. Calcifying coral abundance near low-pH springs: implications for future ocean acidification. Coral Reefs 31: 239–245.

    Article  Google Scholar 

  • Cummings, V., J. Hewitt, A. Van Rooyen, K. Currie, S. Beard, S. Thrush, J. Norkko, N. Barr, P. Heath, N.J. Halliday, R. Sedcole, A. Gomez, C. McGraw, and V. Metcalf. 2011. Ocean acidification at high latitudes: potential effects on functioning of the antarctic bivalve Laternula elliptica. PLoS ONE 6: e16069.

    Article  CAS  Google Scholar 

  • De Bodt, C., N. Van Oostende, J. Harlay, K. Sabbe, and L. Chou. 2010. Individual and interacting effects of pCO2 and temperature on Emiliania huxleyi calcification: study of the calcite production, the coccolith morphology and the coccosphere size. Biogeosciences 7: 1401–1412.

    Article  Google Scholar 

  • Dickson, A.G. 1990. Standard potential of the reaction - AgCl(S) + 1/2H2(g) = AG(S) + HCL(aq) and the standard acidity constant of the ion HSO4− in synthetic sea-water from 273.15 K to 318.15 K. Journal of Chemical Thermodynamics 22: 113–127.

    Article  CAS  Google Scholar 

  • Dickson, A.G., and F.J. Millero. 1987. Comparison of the equilibrium-constants for the dissociation of carbonic-acid in seawater media. Deep Sea Res 34: 1733–1743.

    Article  CAS  Google Scholar 

  • Dickson, A.G., C.L. Sabine, and J.R. Christian. 2007. Guide to the best practices for ocean CO2 measurements. PICES Special Publication 3: 191.

    Google Scholar 

  • Donnarumma, L., C. Lombardi, S. Cocito, and M.C. Gambi. 2014. Settlement pattern of Posidonia oceanica epibionts along a gradient of ocean acidification: an approach with mimics. Mediterranean Marine Science 15: 498–509.

    Google Scholar 

  • Duarte, C.M., I.E. Hendriks, T.S. Moore, Y.S. Olsen, A. Steckbauer, L. Ramajo, J. Carstensen, J.A. Trotter, and M. McCulloch. 2013. Is ocean acidification an open- ocean syndrome? Understanding anthropogenic impacts on Marine pH. Estuaries and Coast 36(2): 221e236. doi:10.1007/s12237-013-9594-3.

    Article  Google Scholar 

  • Edmunds, P.J., D. Brown, and B. Moriarty. 2012. Interactive effects of ocean acidification and temperature on two scleractinian corals from Moorea French Polynesia. Global Change Biology 18: 2173–2183.

    Article  Google Scholar 

  • EEC, 1992. Council directive on the conservation of natural habitats and of wild fauna and flora (the habitats and species directive), ed. EEC. Official Journal of the European Communities.

  • Fabricius, K.E., C. Langdon, S. Uthicke, C. Humphrey, S. Noonan, G. De’ath, R. Okazaki, N. Muehllehner, M.S. Glas, and J.M. Lough. 2011. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change 1(3): 165–169.

    Article  CAS  Google Scholar 

  • Falini, G., G. Sartor, D. Fabbri, P. Vergni, S. Fermani, A.M. Belcher, G.D. Stucky, and D.E. Morse. 2011. The interstitial crystal-nucleating sheet in molluscan Haliotis rufescens shell: a bio-polymeric composite. Journal of Structural Biology 173: 128–137.

    Article  CAS  Google Scholar 

  • Feely, R.A., C.L. Sabine, K. Lee, W. Berelson, J. Kleypas, V.J. Fabry, and F.J. Millero. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305: 362–366.

    Article  CAS  Google Scholar 

  • Fernandez-Reiriz, M.J., P. Range, X.A. Alvarez-Salgado, J. Espinosa, and U. Labarta. 2012. Tolerance of juvenile Mytilus galloprovincialis to experimental seawater acidification. Marine Ecology Progress Series 454: 65–74.

    Article  CAS  Google Scholar 

  • Findlay, H.S., H.L. Wood, M.A. Kendall, J.I. Spicer, R.J. Twitchett, and S. Widdicombe. 2009. Calcification, a physiological process to be considered in the context of the whole organism. Biogeosciences Discussion 6: 2267–2284.

    Article  Google Scholar 

  • Garcia-March, J.R. 2003. Contribution to the knowledge of the status of Pinna nobilis (L.) 1758 in Spanish coasts. Memories de l’institut océanographique Paul Ricard 9: 29–41.

    Google Scholar 

  • Gazeau, F., C. Quiblier, J.M. Jansen, J.-P. Gattuso, J.J. Middelburg, and C.H.R. Heip. 2007. Impact of elevated CO2 on shellfish calcification. Geophysical Research Letters 34, L07603.

    Article  Google Scholar 

  • Gazeau, F., L.M. Parker, S. Comeau, J.-P. Gattuso, W.A. O’ Connor, S. Martin, H.-O. Pörtner, and P.M. Ross. 2013. Impacts of ocean acidification on marine shelled molluscs. Marine Biology 160: 2207–2245.

    Article  CAS  Google Scholar 

  • Gieskes, J.M. 1969. Effect of temperature on the pH of sea water. Limnology and Oceanography 14: 679–685.

    Article  CAS  Google Scholar 

  • Ginger, K.W.K., C.B.S. Vera, R. Dineshram, C.K.S. Dennis, L.J. Adela, Z. Yu, and V. Thiyagarajan. 2013. Larval and post-larval stages of Pacific oyster (Crassostrea gigas) are resistant to elevated CO2. PLoS ONE 8: e64147.

    Article  CAS  Google Scholar 

  • Hahn, S., R. Rodolfo-Metalpa, E. Griesshaber, W.W. Schmahl, D. Buhl, J.M. Hall-Spencer, C. Baggini, K.T. Fehr, and A. Immenhauser. 2012. Marine bivalve shell geochemistry and ultrastructure from modern low pH environments: environmental effect versus experimental bias. Biogeosciences 9: 1897–1914. doi:10.5194/bg-9-1897-2012.

    Article  CAS  Google Scholar 

  • Hall-Spencer, J.M., R. Rodolfo-Metalpa, S. Martin, E. Ransome, M. Fine, S.M. Turner, S.J. Rowley, D. Tedesco, and M.-C. Buia. 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454: 96–99.

    Article  CAS  Google Scholar 

  • Havenhand, J.N., and P. Schlegel. 2009. Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosciences 6: 3009–3015.

    Article  CAS  Google Scholar 

  • Heinemann, A. 2011. The suitability of Mytilus edulis as proxy archive and its response to ocean acidification. Doctoral thesis, Christian-Albrechts-Universität, Kiel, Germany

  • Hendriks, I.E., C.M. Duarte, and M. Alvarez. 2010. Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuarine, Coastal and Shelf Science 86: 157–164.

    Article  CAS  Google Scholar 

  • Hendriks, I.E., L. Basso, S. Deudero, M. Cabanellas-Reboredo, and E. Alvarez. 2012. Relative growth rates of the noble pen shell Pinna nobilis throughout ontogeny around the Balearic Islands (Western Mediterranean, Spain). Journal of Shellfish Research 31: 749–756.

    Article  Google Scholar 

  • Hendriks, I.E., C.M. Duarte, Y.S. Olsen, A. Steckbauer, L. Ramajo, T.S. Moore, J.A. Trotter, and M. McCulloch. 2015. Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems. Estuarine, Coastal and Shelf Science 152: A1-A8. doi:10.1016/j.ecss.2014.07.019.

  • Hendriks, I.E., Y.S. Olsen, L. Ramajo, L. Basso, A. Steckbauer, T.S. Moore, J. Howard, and C.M. Duarte. 2014. Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11: 333–346.

    Article  Google Scholar 

  • Hoegh-Guldberg, O., P.J. Mumby, A.J. Hooten, R.S. Steneck, P. Greenfield, E. Gomez, C.D. Harvell, P.F. Sale, A.J. Edwards, K. Caldeira, N. Knowlton, C.M. Eakin, R. Iglesias-Prieto, N. Muthiga, R.H. Bradbury, A. Dubi, and M.E. Hatziolos. 2007. Coral reefs under rapid climate change and ocean acidification. Science 318: 1737.

    Article  CAS  Google Scholar 

  • Hofmann, G.E., J.E. Smith, K.S. Johnson, U. Send, L.A. Levin, F. Micheli, A. Paytan, N.N. Price, B. Peterson, Y. Takeshita, P.G. Matson, E.D. Crook, K.J. Kroeker, M.C. Gambi, E.B. Rivest, C.A. Frieder, P.C. Yu, and T.R. Martz. 2011. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6(12): e28983.

    Article  CAS  Google Scholar 

  • Hubbard, F., J. McManus and M. Al-Dabbas. 1981. Environmental influences on the shell mineralogy of Mytilus edulisGeo Marine Letter 1: 267–269.

  • IPCC. 2013. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley. Cambridge: Cambridge University Press. doi:10.1017/CBO9781107415324. 1535 pp.

    Google Scholar 

  • Joint, I., S.C. Doney, and D.M. Karl. 2011. Will ocean acidification affect marine microbes? The ISME Journal 5: 1–7.

    Article  Google Scholar 

  • Jokiel, P.L., J.E. Maragos, and L. Franzisket. 1978. Coral growth: buoyant weight technique. In Coral reefs: research methods, ed. D.R. Stoddart and R.E. Johannes, 529–542. Paris: UNESCO monographs on oceanographic methodology.

    Google Scholar 

  • Kamenos, N.A., P. Calosi, and P.G. Moore. 2006. Substratummediated heart rate responses of an invertebrate to predation threat. Animal Behaviour 71: 809–813.

    Article  Google Scholar 

  • Katsanevakis, S. 2007. Growth and mortality rates of the fan mussel Pinna nobilis in Lake Vouliagmeni (Korinthiakos Gulf, Greece): A generalized additive modelling approach. Marine Biology 152: 1319–1331.

    Article  Google Scholar 

  • Katsanevakis, S. 2009. Population dynamics of the endangered fan mussel Pinna nobilis in a marine lake: a metapopulation matrix modeling approach. Marine Biology 156: 1715–1732.

    Article  Google Scholar 

  • Kleypas, J.A., R.A. Feely, V.J. Fabry, C. Langdon, C.L. Sabine, and L.L. Robbins. 2006. Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. Report of a Workshop Held 18–20 April 2005, St. Petersburg, FL, Sponsored by NSF, NOAA, and the U.S. Geological Survey.

  • Kroeker, K.J., R.L. Kordas, R.N. Crim, and G.G. Singh. 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters 13: 1419–1434.

    Article  Google Scholar 

  • Kroeker, K.J., F. Micheli, M.C. Gambi, and T.R. Martz. 2011. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proceedings of the National Academy of Sciences 108: 14515–14520. doi:10.1073/pnas.1107789108.

    Article  CAS  Google Scholar 

  • Kroeker, K.J., R.L. Kordas, R. Crim, I.E. Hendriks, L. Ramajo, G.S. Singh, C.M. Duarte, and J.-P. Gattuso. 2013a. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology 19: 1884–1896.

    Article  Google Scholar 

  • Kroeker, K.J., F. Micheli, and M.C. Gambi. 2013b. Ocean acidification causes ecosystem shifts via altered competitive interactions. Nature Climate Change 3: 156–159.

    Article  CAS  Google Scholar 

  • Krom, M.D., B. Herut, and R.F.C. Mantoura. 2004. Nutrient budget for the eastern Mediterranean: implications for phosphorus limitation. Limnology Oceanography 49(5): 1582–1592.

    Article  CAS  Google Scholar 

  • Kurihara, H. 2008. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology Progress Series 373: 275–284.

    Article  CAS  Google Scholar 

  • Labasque, T. 2004. Spectrophotometric Winkler determination of dissolved oxygen: re-examination of critical factors and reliability. Marine Chemistry 88: 53–60.

    Article  CAS  Google Scholar 

  • Lannig, G., S. Eilers, H.O. Pörtner, I.M. Sokolova, and C. Bock. 2010. Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas-changes in metabolic pathways and thermal response. Marine Drugs 8: 2318–2339.

    Article  CAS  Google Scholar 

  • Liu, W., and M. He. 2012. Effects of ocean acidification on the metabolic rates of three species of bivalve from southern coast of China. Chinese Journal Oceanololy and Limnology 30: 206–211.

    Article  CAS  Google Scholar 

  • Lombardi, C., M.C. Gambi, C. Vasapollo, P.D. Taylor, and S. Cocito. 2011a. Skeletal alteration and polymorphism in a Mediterranean bryozoan at natural CO2 vents. Zoomorphology 130: 135–145. doi:10.1007/s00435-001-0127-y.

    Article  Google Scholar 

  • Lombardi, C., R. Rodolfo-Metalpa, S. Cocito, M.C. Gambi, and P.D. Taylor. 2011b. Structural and geochemical alterations in the Mg calcite bryozoan Myriapora truncata under elevated seawater pCO2 simulating ocean acidification. Marine Ecology 32(2): 211–221. doi:10.1111/j.1439-0485.2010.00426.x.

    Article  Google Scholar 

  • Manzello, D.P., J.A. Kleypas, D.A. Budd, C.M. Eakin, P.W. Glynn, and C. Langdon. 2008. Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world. Proceedings of the National Academy of Sciences 105: 10450–10455.

    Article  CAS  Google Scholar 

  • Mehrbach, C., C.H. Culberso, J.E. Hawley, and R.M. Pytkowic. 1973. Measurement of apparent dissociation-constants of carbonic-acid in seawater at atmospheric-pressure. Limnology and Oceanography 18: 897–907.

    Article  CAS  Google Scholar 

  • Melzner, F., S. Goebel, M. Langenbuch, M.A. Gutowska, H.-O. Pöertner, and M. Lucassen. 2009. Swimming performance in Atlantic Cod (Gadus morhua) following long-term (4–12 months) acclimation to elevated seawater pCO2. Aquatic Toxicology 92: 30–37.

    Article  CAS  Google Scholar 

  • Melzner, F., P. Stange, K. Trübenbach, J. Thomsen, I. Casties, U. Panknin, S.N. Gorb, and M.A. Gutowska. 2011. Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. PLoS ONE 6: e24223.

    Article  CAS  Google Scholar 

  • Michaelidis, B., C. Ouzounis, A. Paleras, and H.O. Pörtner. 2005. Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels Mytilus galloprovincialis. Marine Ecology Progress Series 293: 109–118.

    Article  Google Scholar 

  • Miles, H., S. Widdicombe, J.I. Spicer, and J. Hall-Spencer. 2007. Effects of anthropogenic seawater acidification on acid–base balance in the sea urchin Psammechinus miliaris. Marine Pollution Bulletin 54: 89–96.

    Article  CAS  Google Scholar 

  • Miller, A.W., A.C. Reynolds, C. Sobrino, and F.G. Riedel. 2009. Shellfish face uncertain future in high CO2 world: influence of acidification on oyster larvae calcification and growth in estuaries. PLoS ONE 4: e5661.

    Article  Google Scholar 

  • Moy, A.D., W.R. Howard, S.G. Bray, and T.W. Trull. 2009. Reduced calcification in modern Southern Ocean planktonic Foraminifera. Nature Geoscience 2: 276–280.

    Article  CAS  Google Scholar 

  • Navarro, J.M., R. Torres, K. Acura, C. Duarte, P.H. Manriquez, M. Lardies, N.A. Lagos, C. Vargas, and V. Aguilera. 2013. Impact of medium-term exposure to elevated pCO2 levels on the physiological energetics of the mussel Mytilus chilensis. Chemosphere 90: 1242–1248.

    Article  CAS  Google Scholar 

  • Nienhuis, S., A.R. Palmer, and C.D.G. Harley. 2010. Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail. Proceedings of the Royal Society B: Biological Sciences 277: 2553–2558.

    Article  CAS  Google Scholar 

  • Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R.M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R.G. Najjar, G.K. Plattner, K.B. Rodgers, C.L. Sabine, J.L. Sarmiento, R. Schlitzer, R.D. Slater, I.J. Totterdell, M.F. Weirig, Y. Yamanaka, and A. Yool. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437: 681–686.

    Article  CAS  Google Scholar 

  • Parker, L.M., P.M. Ross, W.A. O’Connor, L. Borysko, D.A. Raftos, and H.O. Pörtner. 2012. Adult exposure influences offspring response to ocean acidification in oysters. Global Change Biology 18: 82–92.

    Article  Google Scholar 

  • Pierrot, D., E. Lewis, and D.W.R. Wallace. 2006. MS Excel Program Developed for CO 2 System Calculations. ORNL/CDIAC-105a. Oak Ridge, Tennessee: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy.

    Google Scholar 

  • Pörtner, H.O. 2008. Ecosystem effects of ocean acidification in times of ocean warming: A physiologist’s view. Marine Ecology Progress Series 373: 203–217.

    Article  Google Scholar 

  • Pörtner, H.O., M. Langenbuch, and A. Reipschläger. 2004. Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. Journal Oceanography 60: 705–718.

    Article  Google Scholar 

  • Rabaoui, L., S.T. Zouari, and O.K. Ben Hassine. 2008. Two species of Crustacea (Decapoda) associated with the fan mussel, Pinna nobilis Linnaeus, 1758 (Mollusca, Bivalvia). Crustaceana 81: 433–446.

    Article  Google Scholar 

  • Range, P., M.A. Chicharo, R. Ben-Hamadou, D. Piló, D. Matias, S. Joaquim, A.P. Oliveira, and L. Chicharo. 2011. Calcification, growth and mortality of juvenile clams Ruditapes decussatus under increased pCO2 and reduced pH: variable responses to ocean acidification at local scales? Journal Experimental Marine Biology and Ecology 396: 177–184.

    Article  Google Scholar 

  • Raven, J., K. Caldeira, H. Elderfield, O. Hoegh-Guldberg, P. Liss, U. Riebesell, J. Shepherd, C. Turley, and A. Watson. 2005. Ocean acidification due to increasing atmospheric carbon dioxide. Policy Document 12/5

  • Ricevuto, E., M. Lorenti, F.P. Patti, M.B. Scipione, and M.C. Gambi. 2012. Temporal trends of benthic invertebrate settlement along a gradient of ocean acidification at natural CO2 vents (Tyrrhenian Sea). Biologia Marina Mediterrana 19(1): 49–52.

    Google Scholar 

  • Richardson, C.A., M. Peharda, H. Kennedy, P. Kennedy, and V. Onofri. 2004. Age, growth rate and season of recruitment of Pinna nobilis (L) in the Croatian Adriatic determined from Mg:Ca and Sr:Ca shell profiles. Journal of Experimental Marine Biology and Ecology 299: 1–16.

    Article  CAS  Google Scholar 

  • Ries, J.B. 2011. Skeletal mineralogy in a high-CO2 world. Journal of Experimental Marine Biology and Ecology 403: 54–64.

    Article  CAS  Google Scholar 

  • Ries, J.B., A.L. Cohen, and D.C. McCorkle. 2009. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37: 1131–1134.

    Article  CAS  Google Scholar 

  • Rodolfo-Metalpa, R., F. Houlbreque, E. Tambutte, F. Boisson, C. Baggini, F.P. Patti, R. Jeffree, M. Fine, A. Foggo, J.P. Gattuso, and J.M. Hall-Spencer. 2011. Coral and mollusc resistance to ocean acidification adversely affected by warming. Nature Climate Change 1: 308–312.

    Article  CAS  Google Scholar 

  • Rodriguez-Navarro, A.B... 2006. XRD2D Scan a new software for polycrystalline materials characterization using two-dimensional X-ray diffraction. Journal of Applied Crystallography 39: 905–909.

    Article  CAS  Google Scholar 

  • Rodríguez-Navarro, A.B..., N. Dominguez-Gasca, A. Munoz, and M. Ortega-Huertas. 2013. Change in the chicken eggshell cuticle with hen age and egg freshness. Poultry Science 92(11): 3026–3035.

    Article  Google Scholar 

  • Sanders, M.B., T.P. Bean, T.H. Hutchinson, and W.J.F. Le Quesne. 2013. Juvenile king scallop, Pecten maximus, is potentially tolerant to low levels of ocean acidification when food is unrestricted. PLoS ONE 8: e74118.

    Article  CAS  Google Scholar 

  • Siletic, T., and M. Peharda. 2003. Population study of the fan shell Pinna nobilis L. in Malo and Veliko Jezero of the Mljet National park (Adriatic Sea). Scientia Marina 67: 91–98.

    Article  Google Scholar 

  • Silverman, J., B. Lazar, L. Cao, K. Caldeira, and J. Erez. 2009. Coral reefs may start dissolving when atmospheric CO2 doubles. Geophysical Research Letters 36, L05606.

    Article  Google Scholar 

  • Thomsen, J., and F. Melzner. 2010. Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Marine Biology 157: 2667–2676.

    Article  Google Scholar 

  • Thomsen, J., M.A. Gutowska, J. Saphoerster, A. Heinemann, K. Truebenbach, J. Fietzke, C. Hiebenthal, A. Eisenhauer, A. Koertzinger, M. Wahl, and F. Melzner. 2010. Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences 7: 3879–3891.

    Article  CAS  Google Scholar 

  • Thomsen, J., I. Casties, C. Pansch, A. Körtzinger, and F. Melzner. 2013. Food availability outweighs ocean acidification effects in juvenile. Mytilus edulis: laboratory and field experiments. Global Change Biology 19(4): 1017–1027. doi:10.1111/gcb.12109.

    Article  Google Scholar 

  • Tunnicliffe, V., K.T.A. Davies, D.A. Butterfield, R.W. Embley, J.M. Rose, and W.W. Chadwick Jr. 2009. Survival of mussels in extremely acidic waters on a submarine volcano. Nature Geoscience 2: 344–348. doi:10.1038/NGEO500.

    Article  CAS  Google Scholar 

  • Widdicombe, S., and J.I. Spicer. 2008. Predicting the impact of ocean acidification on benthic biodiversity: what can animal physiology tell us? Journal of Experimental Marine Biology and Ecology 366: 187–197.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the MedSeA project (www.medsea-project.eu, contract number 265103 of the Framework Program 7 of the European Union), and ESTRESX (ref. CTM2012-32603), funded by the Spanish Ministry of Economy and Competitiveness. L.B. was supported by JAE pre-DOC fellowship and I.E.H. by a JAE-DOC fellowship (CSIC, Spain). We thank the staff of the Benthic Ecology research unit (Villa Dorhn, Ischia) for advice and technical support. We particularly thank Captain Vincenzo Rando for his outstanding support with all boat operations and Asier Rodriguez for his help with analysis of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Basso.

Additional information

Communicated by Richard W. Osman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basso, L., Hendriks, I.E., Rodríguez-Navarro, A.B. et al. Extreme pH Conditions at a Natural CO2 Vent System (Italy) Affect Growth, and Survival of Juvenile Pen Shells (Pinna nobilis). Estuaries and Coasts 38, 1986–1999 (2015). https://doi.org/10.1007/s12237-014-9936-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-014-9936-9

Keywords

Navigation