Skip to main content

Advertisement

Log in

Climate Change Influences Carrying Capacity in a Coastal Embayment Dedicated to Shellfish Aquaculture

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

A spatially explicit coupled hydrodynamic-biogeochemical model was developed to study a coastal ecosystem under the combined effects of mussel aquaculture, nutrient loading and climate change. The model was applied to St Peter’s Bay (SPB), Prince Edward Island, Eastern Canada. Approximately 40 % of the SPB area is dedicated to mussel (Mytilus edulis) longline culture. Results indicate that the two main food sources for mussels, phytoplankton and organic detritus, are most depleted in the central part of the embayment. Results also suggest that the system is near its ultimate capacity, a state where the energy cycle is restricted to nitrogen-phytoplankton-detritus-mussels with few resources left to be transferred to higher trophic levels. Annually, mussel meat harvesting extracts nitrogen (N) resources equivalent to 42 % of river inputs or 46.5 % of the net phytoplankton primary production. Under such extractive pressure, the phytoplankton biomass is being curtailed to 1980’s levels when aquaculture was not yet developed and N loading was half the present level. Current mussel stocks also decrease bay-scale sedimentation rates by 14 %. Finally, a climate change scenario (year 2050) predicted a 30 % increase in mussel production, largely driven by more efficient utilization of the phytoplankton spring bloom. However, the predicted elevated summer temperatures (>25 °C) may also have deleterious physiological effects on mussels and possibly increase summer mortality levels. In conclusion, cultivated bivalves may play an important role in remediating the negative impacts of land-derived nutrient loading. Climate change may lead to increases in production and ecological carrying capacity as long as the cultivated species can tolerate warmer summer conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alvarez-Salgado, X.A., G. Roson, F.F. Perez, F.G. Figueiras, and Y. Pazos. 1996. Nitrogen cycling in an estuarine upwelling system, the Ria de Arousa (NW Spain). I. Short-time-scale patterns of hydrodynamic and biogeochemical circulation. Marine Ecology Progress Series 135: 259–273.

    CAS  Google Scholar 

  • Aminot, A. 1983. Mesure des matières en suspension. In Manuel des analyses chimiques en milieu marin, ed. A. Aminot and M. Chaussepied, 169–175. Brest: Centre national pour l’exploitation des océans.

    Google Scholar 

  • Ariathurai, R., and R.B. Krone. 1976. Finite element model for cohesive sediment transport. Journal of the Hydraulics Division, ASCE 102: 323–338.

    Google Scholar 

  • Asmus, R.M., and H. Asmus. 1991. Mussel beds: limiting or promoting phytoplankton? Journal of Experimental Marine Biology and Ecology 148: 215–232.

    Google Scholar 

  • Aubrey, D.G., T.R. McSherry, and P.P. Eliet. 1993. Effects of multiple inlet morphology on tidal exchange: Waquoit Bay, Massachussetts. In Formation and evolution of multiple tidal inlets. Coastal and estuarine studies, ed. D.G. Aubrey and G.S. Giese, 213–235. Washington: American Geophysical Union.

    Google Scholar 

  • Bacher, C., B. Millet, and A. Vaquer. 1997. Modelling the impact of cultivated filter-feeders on phytoplanktonic biomass of the Thau Lagoon (France). Comptes Rendus de l’Academie des Sciences, Serie III. Sciences de la Vie/Life Sciences 320: 73–81.

    Google Scholar 

  • Banas, N.S., and B.M. Hickey. 2005. Mapping exchange and residence time in a model of Willapa Bay, Washington, a branching, macrotidal estuary. Journal of Geophysical Research, Oceans 110: C11011.

    Google Scholar 

  • Baretta-Bekker, J.G., J.W. Baretta, and E.K. Rasmussen. 1995. The microbial food web in the European regional seas ecosystem model. Netherlands Journal of Sea Research 33: 363–379.

    Google Scholar 

  • Bayne, B.L. 1976. The biology of mussel larvae. In Marine mussels: their ecology and physiology, ed. B.L. Bayne, 81–120. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bayne, B.L., and R.C. Newell. 1983. Physiological energetics of marine molluscs. In The Mollusca, vol. 4, physiology, ed. A.S.M. Saleudin and K.M. Wilber, 407–515. New York: Academic.

    Google Scholar 

  • Beaulieu, S.E. 2003. Resuspension of phytodetritus from the sea floor: a laboratory flume study. Limnology and Oceanography 48: 1235–1244.

    Google Scholar 

  • Bergamasco, A., and C. Zago. 1999. Exploring the nitrogen cycle and macroalgae dynamics in the Lagoon of Venice using a multibox model. Estuarine, Coastal and Shelf Science 48: 155–175.

    CAS  Google Scholar 

  • Boudreau, B.P. 1996. A method-of-lines code for carbon and nutrient diagenesis in aquatic sediments. Computers & Geosciences 22: 479–496.

    CAS  Google Scholar 

  • Bougis, P. 1976. Marine plankton ecology. Amsterdam: North-Holland.

    Google Scholar 

  • Brigolin, D., G. Dal Maschio, F. Rampazzo, M. Giani, and R. Pastres. 2009. An individual-based population dynamic model for estimating biomass yield and nutrient fluxes through an off-shore mussel (Mytilus galloprovincialis) farm. Estuarine, Coastal and Shelf Science 82: 365–376.

    CAS  Google Scholar 

  • Byron, C., D. Bengtson, B. Costa-Pierce, and J. Calanni. 2011a. Integrating science into management: ecological carrying capacity of bivalve shellfish aquaculture. Marine Policy 35: 363–370.

    Google Scholar 

  • Byron, C., J. Link, B. Costa-Pierce, and D. Bengtson. 2011b. Modeling ecological carrying capacity of shellfish aquaculture in highly flushed temperate lagoons. Aquaculture 314: 87–99.

    Google Scholar 

  • Cairns, D.K. 2002. Land use and aquatic resources of Prince Edward Island streams and estuaries: an introduction. In Effects of land use practices on fish, shellfish, and their habitats on Prince Edward Island, ed. D.K. Cairns, 1–13. Ottawa: Canadian Technical Report of Fisheries and Aquatic Sciences. No. 2408.

    Google Scholar 

  • Callier, M.D., A.M. Weise, C.W. McKindsey, and G. Desrosiers. 2006. Sedimentation rates in a suspended mussel farm (Great-Entry Lagoon, Canada): biodeposit production and dispersion. Marine Ecology Progress Series 322: 129–141.

    CAS  Google Scholar 

  • Carmichael, R.H., W. Walton, and H. Clark. 2012. Bivalve-enhanced nitrogen removal from coastal estuaries. Canadian Journal of Fisheries and Aquatic Sciences 69: 1131–1149.

    CAS  Google Scholar 

  • Cerco, C.F., and T.M. Cole. 1994. Three-dimensional model of Cheasapeake Bay. Vicksburg: US Army Corps of Engineers Technical Report EL-94-4.

    Google Scholar 

  • Chapelle, A. 1995. A preliminary model of nutrient cycling in sediments of a Mediterranean lagoon. Ecological Modelling 80: 131–147.

    CAS  Google Scholar 

  • Chapelle, A., P. Lazure, and A. Ménesguen. 1994. Modelling eutrophication events in a coastal ecosystem. Sensitivity analysis. Estuarine, Coastal and Shelf Science 39: 529–548.

    CAS  Google Scholar 

  • Chapelle, A., A. Menesguen, J.-M. Deslous-Paoli, P. Souchu, N. Mazouni, A. Vaquer, and B. Millet. 2000. Modelling nitrogen, primary production and oxygen in a Mediterranean lagoon. Impact of oyster farming and inputs from the watershed. Ecological Modelling 127: 161–181.

    CAS  Google Scholar 

  • Christensen, P.B., R.N. Glud, T. Dalsgaard, and P. Gillespie. 2003. Impacts of longline mussel farming on oxygen and nitrogen dynamics and biological communities of coastal sediments. Aquaculture 218: 567–588.

    Google Scholar 

  • Claustre, H., P. Kerherve, J.-C. Marty, L. Prieur, C. Videau, and J.-H. Hecq. 1994. Phytoplankton dynamics associated with a geostrophic front: ecological and biogeochemical implications. Journal of Marine Research 52: 711–742.

    Google Scholar 

  • Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253.

    CAS  Google Scholar 

  • Comeau, L.A., A. Drapeau, T. Landry, and J. Davidson. 2008. Development of longline mussel farming and the influence of sleeve spacing in Prince Edward Island, Canada. Aquaculture 281: 56–62.

    Google Scholar 

  • Conover, R.J. 1966. Assimilation of organic matter by zooplankton. Limnology and Oceanography 11: 338–345.

    Google Scholar 

  • Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. O’Neill, J. Paruelo, R.G. Raskin, P. Sutton, and M. van den Belt. 1997. The value of the world’s ecosystems services and natural capital. Nature 387: 253–260.

    CAS  Google Scholar 

  • Cranford, P.J., P.M. Strain, M. Dowd, B.T. Hargrave, J. Grant, and M.-C. Archambault. 2007. Influence of mussel aquaculture on nitrogen dynamics in a nutrient enriched coastal embayment. Marine Ecology Progress Series 347: 61–78.

    CAS  Google Scholar 

  • Cranford, P.J., B.T. Hargrave, and L.I. Doucette. 2009. Benthic organic enrichment from suspended mussel (Mytilus edulis) culture in Prince Edward Island, Canada. Aquaculture 292: 189–196.

    Google Scholar 

  • Cranford, P.J., P. Kamermans, G. Krause, J. Mazurié, B.H. Buck, P. Dolmer, D. Fraser, K. Van Nieuwenhove, F.X. O’Beirn, A. Sanchez-Mata, G.G. Thorarinsdóttir, and Ø. Strand. 2012. An ecosystem-based approach and management framework for the integrated evaluation of bivalve aquaculture impacts. Aquaculture Environment Interactions 2: 193–213.

  • Cugier, P., A. Ménesguen, and J.-F. Guillaud. 2005. Three-dimensional (3D) ecological modelling of the Bay of Seine (English Channel, France). Journal of Sea Research 54: 104–124.

    Google Scholar 

  • Dabrowski, T., K. Lyons, M. Curé, A. Berry, and G. Nolan. 2013. Numerical modelling of spatio-temporal variability of growth of Mytilus edulis (L.) and influence of its cultivation on ecosystem functioning. Journal of Sea Research 76: 5–21.

    Google Scholar 

  • Danielescu, S., and K.T.B. MacQuarrie. 2011. Nitrogen loadings to two small estuaries, Prince Edward Island, Canada: a 2-year investigation of precipitation, surface water and groundwater contributions. Hydrological Processes 25: 945–957.

    CAS  Google Scholar 

  • Deason, E.E. 1980. Grazing of Acartia hudsonica (A. clausi) on Skeletonema costatum in Narragansett Bay (USA): influence of food concentration and temperature. Marine Biology 60: 101–113.

    Google Scholar 

  • DFO. 2006. An economic analysis of the mussel industry in Prince Edward Island. Moncton, New Brunswick, 25 p.

  • DiToro, D.M., P.R. Paquin, K. Subburamu, and D.A. Gruber. 1990. Sediment oxygen demand model: methane and ammonia oxidation. Journal of Environmental Engineering 116: 945–986.

    CAS  Google Scholar 

  • Dowd, M. 1997. On predicting the growth of cultured bivalves. Ecological Modelling 104: 113–131.

    Google Scholar 

  • Duarte, P., R. Meneses, A.J.S. Hawkins, M. Zhu, J. Fang, and J. Grant. 2003. Mathematical modelling to assess the carrying capacity for multi-species culture within coastal waters. Ecological Modelling 168: 109–143.

    Google Scholar 

  • Dzierzbicka-Glowacka, L. 2005. A numerical investigation of phytoplankton and Pseudocalanus elongatus dynamics in the spring bloom time in the Gdansk Gulf. Journal of Marine Systems 53: 19–36.

    Google Scholar 

  • Ehrhardt, M. 1983. Determination of particulate organic carbon and nitrogen. In Methods of seawater analysis, ed. K. Grasshoff, M. Ehrhardt, and K. Kremling, 269–275. Weinheim: Verlag chemie.

    Google Scholar 

  • FAO. 2012. The state of world fisheries and aquaculture 2012, 209. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Feist, B.E., and C.A. Simenstad. 2000. Expansion rates and recruitment frequency of exotic smooth cordgrass, Spartina altemiflora (Loisel), colonizing unvegetated littoral flats in Willapa Bay, Washington. Estuaries 23: 267–274.

    Google Scholar 

  • Ferreira, J.G., A.J.S. Hawkins, and S.B. Bricker. 2007. Management of productivity, environmental effects and profitability of shellfish aquaculture—the farm aquaculture resource management (FARM) model. Aquaculture 264: 160–174.

    Google Scholar 

  • Ferreira, J.G., A.J.S. Hawkins, P. Monteiro, H. Moore, M. Service, P.L. Pascoe, L. Ramos, and A. Sequeira. 2008. Integrated assessment of ecosystem-scale carrying capacity in shellfish growing areas. Aquaculture 275: 138–151.

    Google Scholar 

  • Filgueira, R., J. Grant, R. Stuart, and M.S. Brown. 2013. Ecosystem modelling for ecosystem-based management of bivalve aquaculture sites in data-poor environments. Aquaculture Environment Interactions 4: 117–133.

    Google Scholar 

  • Filgueira, R., T. Guyondet, L.A. Comeau, and J. Grant. 2014. A fully-spatial ecosystem-DEB model of oyster (Crassostrea virginica) carrying capacity in the Richibucto Estuary, Eastern Canada. Journal of Marine Systems. doi:10.1016/j.jmarsys.2014.03.015.

    Google Scholar 

  • Foreman, M.G. 1977. Manual for tidal heights analysis and previsions. Pacific marine science report 77–10.

  • Gibbs, M.T. 2004. Interactions between bivalve shellfish farms and fishery resources. Aquaculture 240: 267–296.

    Google Scholar 

  • Gifford, S., H. Dunstan, W.O. Connor, and G.R. Macfarlane. 2005. Quantification of in situ nutrient and heavy metal remediation by a small pearl oyster (Pinctada imbricata) farm at Port Stephens, Australia. Marine Pollution Bulletin 50: 417–422.

    CAS  Google Scholar 

  • Giles, H., and C.A. Pilditch. 2006. Effects of mussel (Perna canaliculus) biodeposit decomposition on benthic respiration and nutrient fluxes. Marine Biology 150: 261–271.

    CAS  Google Scholar 

  • Giusti, E., and S. Marsili-Libelli. 2006. An integrated model for the Orbetello lagoon ecosystem. Ecological Modelling 196: 379–394.

    Google Scholar 

  • Goloway, F., and M. Bender. 1982. Diagenetic models of interstitial nitrate profiles in deep sea sediments. Limnology and Oceanography 27: 624–638.

    CAS  Google Scholar 

  • Grangeré, K., A. Ménesguen, S. Lefebvre, C. Bacher, and S. Pouvreau. 2009. Modelling the influence of environmental factors on the physiological status of the Pacific oyster Crassostrea gigas in an estuarine embayment; the Baie des Veys (France). Journal of Sea Research 62: 147–158.

    Google Scholar 

  • Grant, J., K.J. Curran, T.L. Guyondet, G. Tita, C. Bacher, V.G. Koutitonsky, and M. Dowd. 2007. A box model of carrying capacity for suspended mussel aquaculture in Lagune de la Grande-Entrée, Iles-de-la-Madeleine, Québec. Ecological Modelling 200: 193–206.

    Google Scholar 

  • Grant, J., C. Bacher, P.J. Cranford, T. Guyondet, and M. Carreau. 2008. A spatially explicit ecosystem model of seston depletion in dense mussel culture. Journal of Marine Systems 73: 155–168.

    Google Scholar 

  • Grégoire, M., and G. Lacroix. 2001. Study of the oxygen budget of the Black Sea waters using a 3D coupled hydrodynamical–biogeochemical model. Journal of Marine Systems 31: 175–202.

    Google Scholar 

  • Grégoire, M., J.M. Beckers, J.C.J. Nihoul, and E. Stanev. 1998. Reconnaissance of the main Black Sea’s ecohydrodynamics by means of a 3D interdisciplinary model. Journal of Marine Systems 16: 85–105.

    Google Scholar 

  • Grégoire, M., C. Raick, and K. Soetaert. 2008. Numerical modeling of the central Black Sea ecosystem functioning during the eutrophication phase. Progress in Oceanography 76: 286–333.

    Google Scholar 

  • Gren, I.-M., O. Lindahl, and M. Lindqvist. 2009. Values of mussel farming for combating eutrophication: an application to the Baltic Sea. Ecological Engineering 35: 935–945.

    Google Scholar 

  • Griffin, S.L., M. Herzfeld, and D.P. Hamilton. 2001. Modelling the impact of zooplankton grazing on phytoplankton biomass during a dinoflagellate bloom in the Swan River Estuary, Western Australia. Ecological Engineering 16: 373–394.

    Google Scholar 

  • Guyondet, T., S. Roy, V.G. Koutitonsky, J. Grant, and G. Tita. 2010. Integrating multiple spatial scales in the carrying capacity assessment of a coastal ecosystem for bivalve aquaculture. Journal of Sea Research 64: 341–359.

    Google Scholar 

  • Haag, I. 2006. A basic water quality model for the River Neckar: part 1—model development, parameter sensitivity and identifiability, calibration and validation. Acta Hydrochimica et Hydrobiologica 34: 533–548.

    CAS  Google Scholar 

  • Higgins, C.B., K. Stephenson, and B.L. Brown. 2011. Nutrient bioassimilation capacity of aquacultured oysters: quantification of an ecosystem service. Journal of Environmental Quality 40: 271–277.

    CAS  Google Scholar 

  • Hishamunda, N., N. Ridler, and E. Martone. 2014. Policy and governance in aquaculture: lessons learned and way forward. Fisheries and aquaculture technical paper. Rome: FAO.

    Google Scholar 

  • Hofman, P.A.G., S.A. de Jong, E.J. Wagenvoort, and A.J.J. Sandee. 1991. Apparent sediment diffusion coefficients for oxygen and oxygen consumption rates measured with microelectrodes and bell jars: applications to oxygen budgets in estuarine intertidal sediments (Oosterschelde, SW Netherlands). Marine Ecology Progress Series 69: 261–272.

    Google Scholar 

  • Hummel, H., A.W. Fortuin, R.H. Bogaards, L. de Wolf, and A. Meyboom. 1989. Changes in Mytilus edulis in relation to short-term disturbances of the tide. In Proceedings 21st EMBS, ed. R.Z. Klekowski, L. Falkowski, and E. Stycynska-Jurewicz, 77–89. Warsaw: Ossolineum.

    Google Scholar 

  • Inglis, G.J., B.J. Hayden, and A.H. Ross. 2000. An overview of factors affecting the carrying capacity of coastal embayments for mussel culture. Christchurch: NIWA.

    Google Scholar 

  • Jahnke, R.A., S.R. Emerson, and J.W. Murray. 1982. A model of oxygen reduction, denitrification and organic matter mineralization in marine sediments. Limnology and Oceanography 27: 610–623.

    CAS  Google Scholar 

  • JGOFS. 1994. Primary Production by 14C. In Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements, ed. I.O. Commission, 128–135. Paris: UNESCO.

    Google Scholar 

  • Ji, R., C. Davis, C. Chen, and R. Beardsley. 2008. Influence of local and external processes on the annual nitrogen cycle and primary productivity on Georges Bank: a 3-D biological–physical modeling study. Journal of Marine Systems 73: 31–47.

    Google Scholar 

  • Jimenez-Montealegre, R., M.C.J. Verdegem, A. van Dam, and J.A.J. Verreth. 2002. Conceptualization and validation of a dynamic model for the simulation of nitrogen transformations and fluxes in fish ponds. Ecological Modelling 147: 123–152.

    CAS  Google Scholar 

  • King, I.P. 1982. A finite element model for three dimensional flow. Vicksburg, Mississippi: Report prepared by Resource Management Associates, Lafayette California, for U.S. Army Corps of Engineers, Waterways Experiment Station.

  • King, I.P. 2003. RMA-11—a three dimensional finite element model for water quality in estuaries and streams. Sydney: Resource Modelling Associates. 84p.

    Google Scholar 

  • Kooijman, S.A.L.M. 2000. Dynamic energy and mass budgets in biological systems. Cambridge: Cambridge University Press.

    Google Scholar 

  • Koutitonsky, V.G., T. Guyondet, A. St-Hillaire, S.C. Courtenay, and A.D. Bohgen. 2004. Water renewal estimates for aquaculture developments in the Richibucto Estuary, Canada. Estuaries 27: 839–850.

    Google Scholar 

  • Larsen, P., and G. Ashton. 1986. Thermal regime of lakes and rivers. In River and lake ice engineering, ed. G. Ashton, 203–260. Highlands Ranch: Water Resources Publications.

    Google Scholar 

  • Lehane, C., and J. Davenport. 2006. A 15-month study of zooplankton ingestion by farmed mussels (Mytilus edulis) in Bantry Bay, Southwest Ireland. Estuarine, Coastal and Shelf Science 67: 645–652.

    Google Scholar 

  • Li, Y.-H., and S. Gregory. 1974. Diffusion of ions in sea water and in deep-sea sediments. Geochimica et Cosmochimica Acta 38: 703–714.

    CAS  Google Scholar 

  • Li, M., A. Gargett, and K.L. Denman. 2000. What determines seasonal and interannual variability of phytoplankton and zooplankton in strongly estuarine systems? Application to the semi-enclosed estuary of Strait of Georgia and Juan de Fuca Strait. Estuarine, Coastal and Shelf Science 50: 467–488.

    Google Scholar 

  • Lindahl, O., R. Hart, B. Hernroth, S. Kollberg, L. Loo, L. Olrog, and A. Rehnstam-Holm. 2005. Improving marine water quality by mussel farming: a profitable solution for Swedish Society. Ambio 34: 131–138.

    Google Scholar 

  • Liss, P.S., and L. Merlivat. 1986. Air-sea gas exchange rates: introduction and synthesis. In The role of air-sea exchange in geochemical cycling, ed. P. Buat-Menard, 113–127. Hingham: Reidel.

    Google Scholar 

  • Lohrenz, S.E., G.L. Fahnenstiel, D.G. Redalje, G.A. Lang, M.J. Dagg, T.E. Whitledge, and Q. Dortch. 1999. Nutrients, irradiance, and mixing as factors regulating primary production in coastal waters impacted by the Mississippi River plume. Continental Shelf Research 19: 1113–1141.

    Google Scholar 

  • Lutz, R.A., K. Chalermwat, A.J. Figueras, R.G. Gustafson, and C.R. Newell. 1991. Mussel aquaculture in marine and estuarine environments throughout the world. In Estuarine and marine bivalve mollusk culture, ed. W. Menze, 57–98. Boca Raton: CRC.

    Google Scholar 

  • Maa, J.P.-Y., L. Sanford, and J.P. Halka. 1998. Sediment resuspension characteristics in Baltimore Harbor, Maryland. Marine Geology 146: 137–145.

    Google Scholar 

  • Maar, M., T.G. Nielsen, and J.K. Petersen. 2008. Depletion of plankton in a raft culture of Mytilus galloprovincialis in Ria de Vigo, NW Spain. II. Zooplankton. Aquatic Biology 4: 127–141.

    Google Scholar 

  • Mallet, A.L., C.E.A. Carver, and K.R. Freeman. 1990. Summer mortality of the blue mussel in eastern Canada: spatial, temporal, stock and age variation. Marine Ecology Progress Series 67: 35–41.

    Google Scholar 

  • Marinov, D., L. Galbiati, G. Giordani, P. Viaroli, A. Norro, S. Bencivelli, and J.M. Zaldívar. 2007. An integrated modelling approach for the management of clam farming in coastal lagoons. Aquaculture 269: 306–320.

    Google Scholar 

  • McKindsey, C.W., H. Thetmeyer, T. Landry, and W. Silvert. 2006. Review of recent carrying capacity models for bivalve culture and recommendations for research and management. Aquaculture 261: 451–462.

    Google Scholar 

  • McKindsey, C.W., P. Archambault, M.D. Callier, and F. Olivier. 2011. Influence of suspended and off-bottom mussel culture on the sea bottom and benthic habitats: a review. Canadian Journal of Zoology 89: 622–646.

    Google Scholar 

  • McLeod, K., and H. Leslie. 2009. Ecosystem-based management for the oceans. Washington: Island.

    Google Scholar 

  • Meeuwig, J.J. 1999. Predicting coastal eutrophication from land-use: an empirical approach to small non-stratified estuaries. Marine Ecology Progress Series 176: 231–241.

    CAS  Google Scholar 

  • Mistri, M., and C. Munari. 2012. Clam farming generates CO2: a study case in the Marinetta lagoon (Italy). Marine Pollution Bulletin 64: 2261–2264.

    CAS  Google Scholar 

  • Myrand, B., H. Guderley, and J.H. Himmelman. 2000. Reproduction and summer mortality of blue mussels Mytilus edulis in the Magdalen Islands, southern Gulf of St. Lawrence. Marine Ecology Progress Series 197: 193–207.

    Google Scholar 

  • Newell, R.I.E. 2004. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. Journal of Shellfish Research 23: 51–61.

    Google Scholar 

  • Newell, C.R., H. Hidu, B.J. McAlice, G. Podniesinski, F. Short, and L. Kindblom. 1991. Recruitment and commercial seed procurement of the blue mussel Mytilus edulis in Maine. Journal of the World Aquaculture Society 22: 134–152.

    Google Scholar 

  • Nixon, S.W. 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41: 199–219.

    Google Scholar 

  • Nobre, A.M., J.G. Ferreira, J.P. Nunes, X. Yan, S. Bricker, R. Corner, S. Groom, H. Gu, A.J.S. Hawkins, R. Hutson, D. Lan, J.D. Lencarte Silva, P. Pascoe, T. Telfer, X. Zhang, and M. Zhu. 2010. Assessment of coastal management options by means of multilayered ecosystem models. Estuarine, Coastal and Shelf Science 87: 43–62.

    CAS  Google Scholar 

  • Nunes, J.P., J.G. Ferreira, F. Gazeau, J. Lencart-Silva, X.L. Zhang, M.Y. Zhu, and J.G. Fang. 2003. A model for sustainable management of shellfish polyculture in coastal bays. Aquaculture 219: 257–277.

    Google Scholar 

  • Nunes, J.P., J.G. Ferreira, S.B. Bricker, B. O’Loan, T. Dabrowski, B. Dallaghan, A.J.S. Hawkins, B. O’Connor, and T. O’Carroll. 2011. Towards an ecosystem approach to aquaculture: assessment of sustainable shellfish cultivation at different scales of space, time and complexity. Aquaculture 315: 369–383.

    Google Scholar 

  • Oguz, T., H.W. Ducklow, P. Malanotte-Rizzoli, J.W. Murray, E.A. Shushkina, V.I. Vedernikov, and U. Unluata. 1999. A physical-biochemical model of plankton productivity and nitrogen cycling in the Black Sea. Deep-Sea Research Part I 46: 597–636.

    CAS  Google Scholar 

  • Okunishi, T., M.J. Kishi, A. Shiomoto, H. Tanaka, and T. Yamashita. 2005. An ecosystem modeling study of spatio-temporal variations of phytoplankton distribution in the Okhotsk Sea. Continental Shelf Research 25: 1605–1628.

    Google Scholar 

  • Parker, R.A. 1993. Dynamic models for ammonium inhibition of nitrate uptake by phytoplankton. Ecological Modelling 66: 113–120.

    CAS  Google Scholar 

  • Petersen, J.K., T.G. Nielsen, L. van Duren, and M. Maar. 2008. Depletion of plankton in a raft culture of Mytilus galloprovincialis in Ria de Vigo, NW Spain. I. Phytoplankton. Aquatic Biology 4: 113–125.

    Google Scholar 

  • Petersen, J.K., B. Hasler, K. Timmermann, P. Nielsen, D.B. Tørring, M.M. Larsen, and M. Holmer. 2014. Mussels as a tool for mitigation of nutrients in the marine environment. Marine Pollution Bulletin. doi:10.1016/j.marpolbul.2014.03.006.

    Google Scholar 

  • Peterson, B.J., and K.L. Heck Jr. 1999. The potential for suspension feeding bivalves to increase seagrass productivity. Journal of Experimental Marine Biology and Ecology 240: 37–52.

    Google Scholar 

  • Pett, R.J. 1989. Kinetics of microbial mineralization of organic carbon from detrital Skelatonema costatum cells. Marine Ecology Progress Series 52: 123–128.

    CAS  Google Scholar 

  • Phelps, H.L. 1994. The Asiatic clam (Corbicula fluminea) invasion and system-level ecological change in the Potomac River estuary near Washington, D.C. Estuaries 17: 614–621.

    Google Scholar 

  • Pinazo, C., P. Marsaleix, B. Millet, C. Estournel, and R. Véhil. 1996. Spatial and temporal variability of phytoplankton biomass in upwelling areas of the northwestern Mediterranean: a coupled physical and biogeochemical modelling approach. Journal of Marine Systems 7: 161–191.

    Google Scholar 

  • Plew, D.R. 2011. Shellfish farm-induced changes to tidal circulation in an embayment, and implications for seston depletion. Aquaculture Environment Interactions 1: 201–214.

    Google Scholar 

  • Pouvreau, S., Y. Bourles, S. Lefebvre, A. Gangnery, and M. Alunno-Bruscia. 2006. Application of a dynamic energy budget model to the Pacific oyster, Crassostrea gigas, reared under various environmental conditions. Journal of Sea Research 56: 156–167.

    Google Scholar 

  • Radach, G., and A. Moll. 2006. Review of three-dimensional ecological modelling related to the North Sea shelf system. Part II: model validation and data needs. Oceanography and Marine Biology: An Annual Review 44: 1–60.

    Google Scholar 

  • Ranasinghe, R., and C. Pattiaratchi. 1998. Flushing characteristics of a seasonally-open tidal inlet: a numerical study. Journal of Coastal Research 14: 1405–1421.

    Google Scholar 

  • Raymond, B.G., C.S. Crane, and D.K. Cairns. 2002. Nutrient and chlorophyll trends in Prince Edward Island estuaries. In Effects of land use practices on fish, shellfish, and their habitats on Prince Edward Island, ed. D.K. Cairns, 142–153. Ottawa: Canadian Technical Report of Fisheries and Aquatic Sciences. No. 2408.

    Google Scholar 

  • Redfield, A.C. 1934. On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In James Johnstone Memorial Volume, pp. 176–192. Liverpool University Press.

  • Rice, J., V. Trujill, S. Jennings, K. Hylland, O. Hagstrom, A. Astudillo, and J.N. Jensen. 2005. Guidance on the application of the ecosystem approach to management of human activities in the European marine environment. In ICES Cooperative Research Report Copenhagen: International Council for the Exploration of the Sea.

  • Robson, B.J., and D.P. Hamilton. 2004. Three-dimensional modelling of a Microcystis bloom event in the Swan River estuary, Western Australia. Ecological Modelling 174: 203–222.

    CAS  Google Scholar 

  • Romero, J.R., J.P. Antenucci, and J. Imberger. 2004. One- and three-dimensional biogeochemical simulations of two differing reservoirs. Ecological Modelling 174: 143–160.

    CAS  Google Scholar 

  • Rosenberg, R. 1985. Eutrophication—the future marine coastal nuisance? Marine Pollution Bulletin 16: 227–231.

    CAS  Google Scholar 

  • Rosland, R., Ø. Strand, M. Alunno-Bruscia, C. Bacher, and T. Strohmeier. 2009. Applying Dynamic Energy Budget (DEB) theory to simulate growth and bio-energetics of blue mussels under low seston conditions. Journal of Sea Research 62: 49–61.

    Google Scholar 

  • Rosland, R., C. Bacher, Ø. Strand, J. Aure, and T. Strohmeier. 2011. Modelling growth variability in longline mussel farms as a function of stocking density and farm design. Journal of Sea Research 66: 318–330.

    Google Scholar 

  • Ruardij, P., and W. van Raaphorst. 1995. Benthic nutrient regeneration in the ERSEM ecosystem model of the North Sea. Netherlands Journal of Sea Research 33: 453–483.

    Google Scholar 

  • Savenkoff, C., A.F. Vézina, S. Roy, B. Klein, C. Lovejoy, J.C. Therriault, L. Legendre, R. Rivkin, C. Bérubé, J.E. Tremblay, and N. Silverberg. 2000. Export of biogenic carbon and structure and dynamics of the pelagic food web in the Gulf of St. Lawrence Part 1. Seasonal variations. Deep Sea Research Part II: Topical Studies in Oceanography 47: 585–607.

    CAS  Google Scholar 

  • Scavia, D., J.C. Field, D.F. Boesch, R.W. Buddemeier, V. Burkett, D.R. Cayan, M. Fogarty, M.A. Harwell, R.W. Howarth, C. Mason, D.J. Reed, T.C. Royer, A.H. Sallenger, and J.G. Titus. 2002. Climate change impacts on U.S. coastal and marine ecosystems. Estuaries 25: 149–164.

    Google Scholar 

  • Schulte, E.H. 1975. Influence of algal concentration and temperature on the filtration rate of Mytilus edulis. Marine Biology 30: 331–341.

    Google Scholar 

  • Smaal, A.C. 2002. European mussel cultivation along the Atlantic coast: production status, problems and perspectives. Hydrobiologia 484: 89–98.

    Google Scholar 

  • Smagorinsky, J. 1963. General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Review 91: 99–164.

  • Smith, V.H. 2006. Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment. Limnology and Oceanography 51: 377–384.

    CAS  Google Scholar 

  • Smith, G., and A. Ramsay. 2012. PEI mussel monitoring program. Montague: PEI Department of Fisheries, Aquaculture and Rural Development.

    Google Scholar 

  • Soto, D., J. Aguilar-Manjarrez, and N. Hishamunda. 2008. Building an ecosystem approach to aquaculture. In FAO/Universitat de les Illes Balears expert workshop. 7–11 May 2007, Palma de Mallorca, Spain, ed. FAO. Palma de Mallorca: FAO Fisheries and Aquaculture Proceedings. No. 14.

    Google Scholar 

  • Statistics Canada. 2011. Aquaculture statistics 2010. Agriculture Division, Livestock Section. Catalogue no. 23-222-X. Ottawa.

  • Steele, J.H. 1962. Environmental control of photosynthesis in the sea. Limnology and Oceanography 7: 137–150.

    Google Scholar 

  • Strickland, J.D.H., and T.R. Parsons. 1972. A practical handbook of seawater analysis. Bulletin 167: Fisheries research board of Canada.

  • Strohmeier, T., A. Duinker, Ø. Strand, and J. Aure. 2008. Temporal and spatial variation in food availability and meat ratio in a longline mussel farm (Mytilus edulis). Aquaculture 276: 83–90.

    Google Scholar 

  • Taboada, F.G., and R. Anadón. 2012. Patterns of change in sea surface temperature in the North Atlantic during the last three decades: beyond mean trends. Climatic Change 115: 419–431.

    Google Scholar 

  • Theede, H. 1963. Experimentelle Untersuchungen uber die Filtrationsleistung der Miesmuschel Mytilus edulis. Kieler Meeresforschungen 19: 20–41.

    Google Scholar 

  • Tian, R.C., A.F. Vézina, L. Legendre, R.G. Ingram, B. Klein, T. Packard, S. Roy, C. Savenkoff, N. Silverberg, J.-C. Therriault, and J.-É. Tremblay. 2000. Effects of pelagic food-web interactions and nutrient remineralization on the biogeochemical cycling of carbon: a modeling approach. Deep-Sea Research Part II 47: 637–662.

    CAS  Google Scholar 

  • Troost, K., E. Gelderman, P. Kamermans, A.C. Smaal, and W.J. Wolff. 2009. Effects of an increasing filter feeder stock on larval abundance in the Oosterschelde estuary (SW Netherlands). Journal of Sea Research 61: 153–164.

    Google Scholar 

  • Trottet, A., S. Roy, E. Tamigneaux, and C. Lovejoy. 2007. Importance of heterotrophic planktonic communities in a mussel culture environment: the Grande-Entrée Lagoon, Magdalen Islands (Québec, Canada). Marine Biology 151: 377–392.

    Google Scholar 

  • Twilley, R.R., W.M. Kemp, K.W. Staver, J.C. Stevenson, and W.R. Boynton. 1985. Nutrient enrichment of estuarine submersed vascular plant communities. 1. Algal growth and effects on production of plants and associated communities. Marine Ecology Progress Series 23: 179–191.

    Google Scholar 

  • Valiela, I., J. McClelland, J. Hauxwell, P.J. Behr, D. Hersh, and K. Foreman. 1997. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnology and Oceanography 42: 1105–1118.

    Google Scholar 

  • van der Veer, H.W., J.F.M.F. Cardoso, and J. van der Meer. 2006. The estimation of DEB parameters for various Northeast Atlantic bivalve species. Journal of Sea Research 56: 107–124.

    Google Scholar 

  • Vasseur, L., and N.R. Catto. 2008. Canada Atlantique. In Vivre avec les changements climatiques au Canada: Édition 2007, ed. D.S. Lemmen, F.J. Warren, J. Lacroix, and E. Bush, 119–170. Ottawa: Gouvernement du Canada.

    Google Scholar 

  • Villars, M., I. de Vries, M. Bokhorst, J. Ferreira, S. Gellers-Barkman, B. Kelly-Gerreyn, C. Lancelot, A. Menesguen, A. Moll, J. Pätsch, G. Radach, M. Skogen, H. Soiland, E. Svendsen, and H.J. Vested. 1998. Report of the ASMO modelling workshop on eutrophication issues, 5–8 November 1996, ed. OSPAR Commission. Report 102. RIKZ, The Hague, The Netherlands.

  • Wainright, S.C., and C.S. Hopkinson Jr. 1997. Effects of sediment resuspension on organic matter processing in coastal environments: a simulation model. Journal of Marine Systems 11: 353–368.

    Google Scholar 

  • Walker, T.R., and J. Grant. 2009. Quantifying erosion rates and stability of bottom sediments at mussel aquaculture sites in Prince Edward Island, Canada. Journal of Marine Systems 75: 46–55.

    Google Scholar 

  • Wall, C.C., B.J. Peterson, and C.J. Gobler. 2011. The growth of estuarine resources (Zostera marina, Mercenaria mercenaria, Crassostrea virginica, Argopecten irradians, Cyprinodon variegatus) in response to nutrient loading and enhanced suspension feeding by adult shellfish. Estuaries and Coasts 34: 1262–1277.

    Google Scholar 

  • Walters, R.A., and C. Heston. 1982. Removing tidal period variations from time-series data using low-pass digital filters. Journal of Physical Oceanography 12: 112–115.

    Google Scholar 

  • Wheat, E., and J.L. Ruesink. 2013. Commercially-cultured oysters (Crassostrea gigas) exert top-down control on intertidal pelagic resources in Willapa Bay, Washington, USA. Journal of Sea Research 81: 33–39.

    Google Scholar 

  • Widdows, J., P. Fieth, and C.M. Worrall. 1979. Relationships between seston, available food and feeding activity in the common mussel Mytilus edulis. Marine Biology 50: 195–207.

    CAS  Google Scholar 

  • Zhang, J., P.K. Hansen, J. Fang, W. Wang, and Z. Jiang. 2009. Assessment of the local environmental impact of intensive marine shellfish and seaweed farming—application of the MOM system in the Sungo Bay, China. Aquaculture 287: 304–310.

    Google Scholar 

Download references

Acknowledgments

This project was funded by DFO’s Program for Aquaculture Regulatory Research (PARR project 2010-G-06). The authors gratefully acknowledge Thomas Landry and Arthur Smith for their input and advice during the initial phases of the project. Thanks are also due to mussel growers for their cooperation. Stephen Fortune generously contributed his time and boat and kindly allowed our team to work inside his lease. Tina Sonier, André Nadeau, Liliane St-Amand and Roxanne Girard provided invaluable technical assistance during the 16 field expeditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Guyondet.

Additional information

Communicated by Carolyn A. Currin

Appendices

Appendix 1

All dissolved and particulate pelagic variables are transported by water movements. This transport is represented using the following 2D depth-averaged advection–dispersion equation:

$$ h\left(\frac{\partial C}{\partial t}+u\frac{\partial C}{\partial x}+v\frac{\partial C}{\partial y}\right)-\frac{\partial }{\partial x}\left({D}_xh\frac{\partial C}{\partial x}+{D}_{xy}h\frac{\partial C}{\partial y}\right)-\frac{\partial }{\partial y}\left({D}_{xy}h\frac{\partial C}{\partial x}+{D}_yh\frac{\partial C}{\partial y}\right)-h{\theta}_{\mathrm{C}}=0 $$

where t represents the time; (x, y) the cartesian coordinates; (u, v) the velocities in the cartesian directions obtained from the hydrodynamic model simulation; h the water depth from the hydrodynamic model; C the concentration of any transported constituent; D x , D y , D xy the eddy diffusion coefficients; and θ C the source/sink for the transported constituent. These source/sink terms as well as the equations for the mussel and benthic variables are detailed below.

Phytoplankton (P; mg C m−3)

$$ {\theta}_{\mathrm{P}}={P}_{\mathrm{P}\mathrm{ROD}}-{P}_{\mathrm{RESP}}-{P}_{\mathrm{MORT}}-{\mathrm{MUS}}_{\mathrm{GRAZ}}^{\mathrm{P}}-{Z}_{\mathrm{GRAZ}}^{\mathrm{P}} $$
  • P PROD: P gross primary production. \( {P}_{\mathrm{P}\mathrm{ROD}}={\mu}_0^{\mathrm{P}}{e}^{k_{\mathrm{P}}^{\mathrm{P}}T}{X}_{\mathrm{N}}^{\mathrm{P}}{X}_{\mathrm{L}}^{\mathrm{P}}\cdot P \)

    with \( {X}_{\mathrm{N}}^{\mathrm{P}}={X}_{{\mathrm{N}\mathrm{H}}_4}^{\mathrm{P}}+{X}_{{\mathrm{N}\mathrm{O}}_3}^{\mathrm{P}}\ \mathrm{where}\ {X}_{{\mathrm{N}\mathrm{H}}_4}^{\mathrm{P}}=\frac{{\mathrm{N}\mathrm{H}}_4}{{\mathrm{N}\mathrm{H}}_4+{K}_{{\mathrm{N}\mathrm{H}}_4}^{\mathrm{P}}};{X}_{{\mathrm{N}\mathrm{O}}_3}^{\mathrm{P}}=\frac{{\mathrm{N}\mathrm{O}}_3}{{\mathrm{N}\mathrm{O}}_3+{K}_{{\mathrm{N}\mathrm{O}}_3}^{\mathrm{P}}}\frac{K_{{\mathrm{N}\mathrm{H}}_4}^{\mathrm{P}}}{{\mathrm{N}\mathrm{H}}_4+{K}_{{\mathrm{N}\mathrm{H}}_4}^{\mathrm{P}}} \); the uptake of NO3 is inhibited by NH4 (second term of \( {X}_{{\mathrm{NO}}_3}^{\mathrm{P}} \)) as proposed by Parker (1993)

    $$ {X}_{\mathrm{L}}^{\mathrm{P}}=\frac{1}{h}{\displaystyle {\int}_0^h\frac{I(z)}{I_0^{\mathrm{P}}}} \exp \left(1-\frac{I(z)}{I_0^{\mathrm{P}}}\right)\mathrm{d}z\ \mathrm{f}\mathrm{o}\mathrm{r}\ I<{I}_0^{\mathrm{P}}\ \left(\mathrm{Steele}\ 1962\right)\ \mathrm{and}\ {X}_{\mathrm{L}}^{\mathrm{P}}=1\ \mathrm{f}\mathrm{o}\mathrm{r}\ I\ge {I}_0^{\mathrm{P}} $$

    where I(z) = I S e − λz with I S: water surface light intensity

    λ: light attenuation coefficient \( \lambda ={\lambda}_0+{\lambda}_1P*+{\lambda}_2P{*}^{\raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right.} \)

    P * is P expressed in mg Chl a m−3 (P * = Chl a/C P ⋅ P)

    T: water temperature

  • P RESP: P respiration. \( {P}_{\mathrm{RESP}}={\beta}_0^{\mathrm{P}}{e}^{k_{\mathrm{r}}^{\mathrm{P}}T}\cdot P \)

  • P MORT: P mortality. \( {P}_{\mathrm{MORT}}={\lambda}^{\mathrm{P}}{e}^{k_{\mathrm{r}}^{\mathrm{P}}T}\cdot P \)

  • MUS PGRAZ : Mussel grazing on P. MUS PGRAZ  = FC MP  ⋅ MUSGRAZ

    with \( {\mathrm{M}\mathrm{US}}_{\mathrm{GRAZ}}=\mathrm{J}\;\mathrm{mg}\;{\mathrm{C}}^{-1}{n}^{\mathrm{M}}\frac{{\dot{p}}_{\mathrm{A}}}{{\mathrm{A}\mathrm{E}}^{\mathrm{M}}};\ {\mathrm{FC}}_{\mathrm{P}}^{\mathrm{M}}=\frac{\varepsilon_{\mathrm{P}}^{\mathrm{M}}\cdot P}{{\mathrm{food}}^{\mathrm{M}}} \)

    $$ {\mathrm{food}}^{\mathrm{M}}=\left({\varepsilon}_{\mathrm{D}}^{\mathrm{M}}\cdot D*+{\varepsilon}_{\mathrm{P}}^{\mathrm{M}}\cdot P+{\varepsilon}_{\mathrm{Z}}^{\mathrm{M}}\cdot Z\right);\ D*=\frac{D}{N/{C}^{\mathrm{D}}};\ {\dot{p}}_{\mathrm{A}}\ \mathrm{see}\ \mathrm{Mussel} $$
  • Z PGRAZ : Mesozooplankton grazing on P. Z PGRAZ  = FC ZP Z GRAZ

    with \( {Z}_{\mathrm{GRAZ}}={c}_{\mathrm{I}}^{\mathrm{Z}}{X}_{\mathrm{F}}^{\mathrm{Z}}{I}^{\mathrm{Z}}{e}^{k_{\mathrm{P}}^{\mathrm{Z}}T}\cdot Z;\ {\mathrm{F}\mathrm{C}}_{\mathrm{P}}^{\mathrm{Z}}=\frac{\varepsilon_{\mathrm{P}}^{\mathrm{Z}}\cdot P}{{\mathrm{food}}^{\mathrm{Z}}};\ {X}_{\mathrm{F}}^{\mathrm{Z}}=\frac{{\mathrm{food}}^{\mathrm{Z}}}{{\mathrm{food}}^{\mathrm{Z}}+{K}_{\mathrm{F}}^{\mathrm{Z}}};\ {\mathrm{food}}^{\mathrm{Z}}=\left({\varepsilon}_{\mathrm{D}}^{\mathrm{Z}}\cdot D*+{\varepsilon}_{\mathrm{P}}^{\mathrm{Z}}\cdot P\right) \)

Zooplankton (Z; mg C m−3)

$$ {\theta}_{\mathrm{Z}}={Z}_{\mathrm{ASML}}-{Z}_{\mathrm{RESP}}-{Z}_{\mathrm{MORT}}-{\mathrm{MUS}}_{\mathrm{GRAZ}}^{\mathrm{Z}} $$
  • Z ASML: Z food assimilation. Z ASML = AEZ ⋅ Z GRAZ

    with \( {\mathrm{AE}}^{\mathrm{Z}}=\frac{{\mathrm{AE}}_{\mathrm{D}}^{\mathrm{Z}}{\varepsilon}_{\mathrm{D}}^{\mathrm{Z}}\cdot D*+{\mathrm{AE}}_{\mathrm{P}}^{\mathrm{Z}}{\varepsilon}_{\mathrm{P}}^{\mathrm{Z}}\cdot P}{{\mathrm{food}}^{\mathrm{Z}}} \)

  • Z RESP: Z respiration. \( {Z}_{\mathrm{R}\mathrm{ESP}}={c}_{\mathrm{R}}^{\mathrm{Z}}{\beta}_{\mathrm{R}}^{\mathrm{Z}}{e}^{k_{\mathrm{r}}^{\mathrm{Z}}T}\cdot Z \)

  • Z MORT: Z mortality. \( {Z}_{\mathrm{MORT}}={\lambda}^{\mathrm{Z}}{e}^{k_{\mathrm{r}}^{\mathrm{Z}}T}\cdot Z \)

  • MUS ZGRAZ : Mussel grazing on Z. MUS ZGRAZ  = FC MZ  ⋅ MUSGRAZ with \( {\mathrm{FC}}_{\mathrm{Z}}^{\mathrm{M}}=\frac{\varepsilon_{\mathrm{Z}}^{\mathrm{M}}\cdot Z}{{\mathrm{food}}^{\mathrm{M}}} \)

Organic Detritus (D; mg N m−3)

$$ {\theta}_{\mathrm{D}}=N/{C}^{\mathrm{P}}\left({P}_{\mathrm{RESP}}+{P}_{\mathrm{MORT}}\right)+N/{C}^{\mathrm{Z}}\left({Z}_{\mathrm{MORT}}+{Z}_{\mathrm{FCS}}\right)-{\mathrm{MUS}}_{\mathrm{GRAZ}}^{\mathrm{D}}-{Z}_{\mathrm{GRAZ}}^{\mathrm{D}}-{D}_{\mathrm{MIN}}-{D}_{\mathrm{SETL}} $$
  • Z FCS: Z faeces production. Z FCS = (1 − AE ZP ) ⋅ Z PGRAZ  + (1 − AE ZD ) ⋅ Z DGRAZ

  • MUS DGRAZ : Mussel grazing on D. MUS DGRAZ  = FC MD  ⋅ MUSGRAZ with \( {\mathrm{FC}}_{\mathrm{D}}^{\mathrm{M}}=\frac{\varepsilon_{\mathrm{D}}^{\mathrm{M}}\cdot D*}{{\mathrm{food}}^{\mathrm{M}}} \)

  • Z DGRAZ : Zooplankton grazing on D. Z DGRAZ  = FC ZD  ⋅ Z GRAZ with \( {\mathrm{FC}}_{\mathrm{D}}^{\mathrm{Z}}=\frac{\varepsilon_{\mathrm{D}}^{\mathrm{Z}}\cdot D*}{{\mathrm{food}}^{\mathrm{Z}}} \)

  • D MIN: D mineralization. \( {D}_{\mathrm{MIN}}= \min {}_0^{\mathrm{D}}{X}_{{\mathrm{O}}_2}^{\mathrm{D}}{e}^{k_{\min}^{\mathrm{D}}T}\cdot D \)with \( {X}_{{\mathrm{O}}_2}^{\mathrm{D}}=\frac{{\mathrm{O}}_2}{{\mathrm{O}}_2+{K}_{{\mathrm{O}}_2}^{\mathrm{D}}} \)

  • D SETL: D settling. \( {D}_{\mathrm{S}\mathrm{ETL}}=\frac{w_{\mathrm{S}}^{\mathrm{D}}}{h}\cdot D \)

Ammonium (NH4; mg N m−3)

$$ {\theta}_{{\mathrm{NH}}_4}={D}_{\mathrm{MIN}}+{\mathrm{MUS}}_{\mathrm{EXCR}}+{Z}_{\mathrm{EXCR}}-{{\mathrm{NH}}_{4\;}}_{\mathrm{NITR}}-{P}_{\mathrm{UPTK}}^{{\mathrm{NH}}_4}+{{\mathrm{NH}}_4}_{\mathrm{DIFF}} $$
  • MUSEXCR: Mussel excretion. (see Mussel below for \( {\dot{p}}_{\mathrm{M}},\ {\dot{p}}_{\mathrm{C}},\ {\dot{p}}_{\mathrm{J}} \))

    $$ {\mathrm{M}\mathrm{US}}_{\mathrm{EXCR}}=\mathrm{J}\;\mathrm{mg}\;{\mathrm{C}}^{-1}{n}^{\mathrm{M}}N/{C}^{\mathrm{M}}\left({\dot{p}}_{\mathrm{M}}+\left(1-{\kappa}_{\mathrm{R}}\right)\left[\left(1-\kappa \right){\dot{p}}_{\mathrm{C}}-{\dot{p}}_{\mathrm{J}}\right]+{\dot{p}}_{\mathrm{J}}+\frac{\left[{E}_{\mathrm{G}}\right]-\left[{E}_0\right]}{\left[{E}_{\mathrm{G}}\right]}\left(\kappa {\dot{p}}_{\mathrm{C}}-{\dot{p}}_{\mathrm{M}}\right)\right) $$
  • Z EXCR: Z excretion. Z EXCR = N/C Z ⋅ Z RESP

  • NH4 NITR: NH4 nitrification. \( {{\mathrm{NH}}_{4\;}}_{\mathrm{NITR}}={\mathrm{nitr}}_0^{{\mathrm{NH}}_4}{X}_{{\mathrm{O}}_2}^{{\mathrm{NH}}_4}{e}^{k_{\mathrm{nitr}}^{{\mathrm{NH}}_4}T}\cdot {\mathrm{NH}}_4 \) with \( {X}_{{\mathrm{O}}_2}^{{\mathrm{NH}}_4}=\frac{{\mathrm{O}}_2}{{\mathrm{O}}_2+{K}_{{\mathrm{O}}_2}^{{\mathrm{NH}}_4}} \)

  • \( {P}_{\mathrm{UPTK}}^{{\mathrm{NH}}_4} \): NH4 uptake by P. \( {P}_{\mathrm{UPTK}}^{{\mathrm{N}\mathrm{H}}_4}=N/{C}^{\mathrm{P}}\frac{X_{{\mathrm{N}\mathrm{H}}_4}^{\mathrm{P}}}{X_{\mathrm{N}}^{\mathrm{P}}}{P}_{\mathrm{P}\mathrm{ROD}} \)

  • NH4 DIFF: NH4 diffusion from sediment. \( {{\mathrm{NH}}_{4\;}}_{\mathrm{DIFF}}={\mathrm{Diff}}_0^{{\mathrm{NH}}_4}\left(1+\frac{T}{20}\right)\frac{\alpha }{\frac{\left(\mathrm{B}\mathrm{L}\mathrm{T}+h\right)}{2}}\frac{\left({\mathrm{BNH}}_4-{\mathrm{NH}}_4\right)}{h} \)

Nitrate (NO3; mg N.m−3)

$$ {\theta}_{{\mathrm{NO}}_3}={{\mathrm{NH}}_{4\;}}_{\mathrm{NITR}}-{P}_{\mathrm{UPTK}}^{{\mathrm{NO}}_3}+{{\mathrm{NO}}_{3\;}}_{\mathrm{DIFF}} $$
  • \( {P}_{\mathrm{UPTK}}^{{\mathrm{NO}}_3} \): NO3 uptake by P. \( {P}_{\mathrm{UPTK}}^{{\mathrm{N}\mathrm{O}}_3}=N/{C}^{\mathrm{P}}\frac{X_{{\mathrm{N}\mathrm{O}}_3}^{\mathrm{P}}}{X_{\mathrm{N}}^{\mathrm{P}}}{P}_{\mathrm{P}\mathrm{ROD}} \)

  • NO3 DIFF: NO3 diffusion from sediment. \( {{\mathrm{NO}}_{3\;}}_{\mathrm{DIFF}}={\mathrm{Diff}}_0^{{\mathrm{NO}}_3}\left(1+\frac{T}{20}\right)\frac{\alpha }{\frac{\left(\mathrm{B}\mathrm{L}\mathrm{T}+h\right)}{2}}\frac{\left({\mathrm{BNO}}_3-{\mathrm{NO}}_3\right)}{h} \)

Dissolved Oxygen (O2; mg O2 L−1)

$$ {\theta}_{{\mathrm{O}}_2}={{\mathrm{O}}_{2\;}}_{\mathrm{ATMR}}+\frac{1}{1000}\left[{P}_{\mathrm{PROD}}^{*}-{P}_{\mathrm{RESP}}^{*}-{Z}_{\mathrm{RESP}}^{*}-{\mathrm{MUSS}}_{\mathrm{RESP}}-{D}_{\mathrm{MIN}}^{*}-{{\mathrm{NH}}_{4\;}}_{\mathrm{NITR}}^{*}-\frac{\mathrm{wfract}}{h}{\mathrm{SOD}}_{\mathrm{RWAT}}+{{\mathrm{O}}_{2\;}}_{\mathrm{DIFF}}\right] $$
  • O2 ATMR: water reaeration from the atmosphere. \( {{\mathrm{O}}_{2\;}}_{\mathrm{ATMR}}={K}_{\mathrm{a}}^{{\mathrm{O}}_2}\left({{\mathrm{O}}_{2\;}}_{\mathrm{sat}}-{\mathrm{O}}_2\right) \)

    with O2 sat: O2 saturation concentration at the local temperature, salinity and pressure;

    \( {K}_{\mathrm{a}}^{{\mathrm{O}}_2} \): atmospheric reaeration rate (day−1) based on wind speed (u w in m s−1) and given by:

    \( {K}_{\mathrm{a}}^{{\mathrm{O}}_2}=0.048\cdot {u}_{\mathrm{w}} \) for u w < 3.6 m s−1;

    \( {K}_{\mathrm{a}}^{{\mathrm{O}}_2}=0.773\cdot {u}_{\mathrm{w}}-2.61 \) for 3.6 < u w < 13 m s−1;

    \( {K}_{\mathrm{a}}^{{\mathrm{O}}_2}=1.6\cdot {u}_{\mathrm{w}}-13.3 \) for u w > 3 m s−1 (Liss and Merlivat 1986)

  • P *PROD : O2 produced by P photosynthesis. \( {P}_{\mathrm{P}\mathrm{ROD}}^{*}={p}_{{\mathrm{O}}_2}^{\mathrm{P}}\cdot {P}_{\mathrm{P}\mathrm{ROD}} \)

  • P *RESP : O2 consumed by P respiration. \( {P}_{\mathrm{RESP}}^{*}={r}_{{\mathrm{O}}_2}^{\mathrm{P}}\cdot {P}_{\mathrm{RESP}} \)

  • Z *RESP : O2 consumed by Z respiration. \( {Z}_{\mathrm{RESP}}^{*}={r}_{{\mathrm{O}}_2}^{\mathrm{Z}}\cdot {Z}_{\mathrm{RESP}} \)

  • MUSSRESP: O2 consumed by Mussel respiration. \( {\mathrm{M}\mathrm{USS}}_{\mathrm{RESP}}={r}_{{\mathrm{O}}_2}^{\mathrm{M}}\cdot {n}^{\mathrm{M}}\cdot {\dot{p}}_{\mathrm{C}} \)

  • D *MIN : O2consumed by D mineralization. \( {D}_{\mathrm{MIN}}^{*}={r}_{{\mathrm{O}}_2}^{\mathrm{D}}\cdot {D}_{\mathrm{MIN}} \)

  • NH4 *NITR : O2 consumed by NH4 nitrification. \( {{\mathrm{NH}}_{4\;}}_{\mathrm{NITR}}^{*}={r}_{{\mathrm{O}}_2}^{{\mathrm{NH}}_4}\cdot {{\mathrm{NH}}_{4\;}}_{\mathrm{NITR}} \)

  • SODRWAT: O2 consumed by sediment oxygen demand (SOD) released to the water column.

    SODRWAT = relSOD ⋅ SOD and wfract = α ⋅ BLT, the sediment interstitial water fraction.

  • O2 DIFF: O2 diffusion from sediment. \( {{\mathrm{O}}_{2\;}}_{\mathrm{DIFF}}={\mathrm{Diff}}_0^{{\mathrm{O}}_2}\left(1+\frac{T}{20}\right)\frac{\alpha }{\frac{\left(\mathrm{B}\mathrm{L}\mathrm{T}+h\right)}{2}}\frac{\left({\mathrm{BO}}_2-{\mathrm{O}}_2\times 1000\right)}{h} \)

Mussel Biodeposits (BDP; mg N m−3)

$$ {\theta}_{\mathrm{BDP}}=N/{C}^{\mathrm{M}}\cdot {\mathrm{M}\mathrm{USS}}_{\mathrm{FCS}}-{\mathrm{BDP}}_{\mathrm{M}\mathrm{IN}}-{\mathrm{BDP}}_{\mathrm{SETL}} $$
  • MUSSFCS: Mussel faeces production. MUSSFCS = (1 − AEM)MUSSGRAZ

  • BDPMIN: BDP mineralization. \( {\mathrm{BDP}}_{\mathrm{MIN}}= \min {}_0^{\mathrm{D}}{X}_{{\mathrm{O}}_2}^{\mathrm{D}}{e}^{k_{\min}^{\mathrm{D}}T}\cdot \mathrm{B}\mathrm{D}\mathrm{P} \)

  • BDPSETL: BDP settling. \( {\mathrm{BDP}}_{\mathrm{S}\mathrm{ETL}}=\frac{w_{\mathrm{S}}^{\mathrm{BDP}}}{h}\cdot \mathrm{B}\mathrm{D}\mathrm{P} \)

Mussel Energy Pools (E S, E V, E R; J)

  • Storage: \( \frac{\mathrm{d}{E}_{\mathrm{S}}}{\mathrm{d}t}={\dot{p}}_{\mathrm{A}}-{\dot{p}}_{\mathrm{C}} \)

    where \( \begin{array}{l}{\dot{p}}_{\mathrm{A}}={\mathrm{A}\mathrm{E}}^{\mathrm{M}}\dot{k}(T)\left\{{p}_{\mathrm{Xm}}\right\}{X}_{\mathrm{F}}^{\mathrm{M}}{V}^{\raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right.}\hfill \\ {}{\dot{p}}_{\mathrm{C}}=\frac{\left[{E}_{\mathrm{S}}\right]}{\left[{E}_{\mathrm{G}}\right]+\kappa \left[{E}_{\mathrm{S}}\right]}\dot{k}(T)\left[\frac{\left[{E}_{\mathrm{G}}\right]{\mathrm{A}\mathrm{E}}^{\mathrm{M}}\left\{{p}_{\mathrm{Xm}}\right\}{V}^{\raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right.}}{\left[{E}_{\mathrm{m}}\right]}+\left[{p}_{\mathrm{M}}\right]V\right]\hfill \end{array} \)

    with \( \begin{array}{l}V=\frac{E_{\mathrm{V}}}{\left[{E}_{\mathrm{G}}\right]};\ {X}_{\mathrm{F}}^{\mathrm{M}}=\frac{{\mathrm{food}}^{\mathrm{M}}}{{\mathrm{food}}^{\mathrm{M}}+{K}_{\mathrm{F}}^{\mathrm{M}}};\ \left[{E}_{\mathrm{S}}\right]=\frac{E_{\mathrm{S}}}{V}\hfill \\ {}\dot{k}(T)= \exp \left\{\frac{T_{\mathrm{A}}}{T_1}-\frac{T_{\mathrm{A}}}{T}\right\}\frac{s(T)}{s\left({T}_1\right)};\kern0.5em s(T)={\left(1+ \exp \left\{\frac{T_{\mathrm{A}\mathrm{L}}}{T}-\frac{T_{\mathrm{A}\mathrm{L}}}{T_{\mathrm{L}}}\right\}+ \exp \left\{\frac{T_{\mathrm{A}\mathrm{H}}}{T_{\mathrm{H}}}-\frac{T_{\mathrm{A}\mathrm{H}}}{T}\right\}\right)}^{-1}\hfill \end{array} \)

  • Structure: \( \frac{\mathrm{d}{E}_{\mathrm{V}}}{\mathrm{d}t}=\kappa \cdot {\dot{p}}_{\mathrm{C}}-{\dot{p}}_{\mathrm{M}} \) where \( {\dot{p}}_{\mathrm{M}}=\dot{k}(T)\cdot \left[{p}_{\mathrm{M}}\right]\cdot V \)

  • Reproduction: \( \frac{\mathrm{d}{E}_{\mathrm{R}}}{\mathrm{d}t}=\left(1-\kappa \right){\dot{p}}_{\mathrm{C}}-{\dot{p}}_{\mathrm{J}} \) where \( {\dot{p}}_{\mathrm{J}}=\left(\frac{1-\kappa }{\kappa}\right)\cdot \min \left(V,{V}_{\mathrm{p}}\right)\cdot \dot{k}(T)\cdot \left[{p}_{\mathrm{M}}\right] \)

Bed Organic Detritus (BD; mg N m−3)

$$ \frac{\mathrm{d}\mathrm{BD}}{\mathrm{d}t}=\frac{h}{\mathrm{pfract}}\left({D}_{\mathrm{SETL}}+{\mathrm{BD}\mathrm{P}}_{\mathrm{SETL}}\right)-{\mathrm{BD}}_{\mathrm{MIN}}-{\mathrm{BD}}_{\mathrm{BUR}}-{\mathrm{BD}}_{\mathrm{EROS}} $$
  • BDMIN: BD mineralization. \( {\mathrm{BD}}_{\mathrm{MIN}}= \min {}_0^{\mathrm{BD}}{e}^{k_{\min}^{\mathrm{BD}}T}\cdot \mathrm{B}\mathrm{D} \)

  • BDBUR: BD burial in inactive sediment layers. BDBUR = burialBD ⋅ BD

  • BDEROS: BD erosion. BDEROS = M BD ⋅ δ BDr  ⋅ BD

    with \( {\delta}_{\mathrm{r}}^{\mathrm{BD}}=0\kern0.5em \mathrm{f}\mathrm{o}\mathrm{r}\kern0.5em {\tau}_{\mathrm{b}}<{\tau}_{\mathrm{crit}}^{\mathrm{BD}}\kern0.5em \mathrm{and}\kern0.5em {\delta}_{\mathrm{r}}^{\mathrm{BD}}=\frac{\tau_{\mathrm{b}}-{\tau}_{\mathrm{crit}}^{\mathrm{BD}}}{\tau_{\mathrm{crit}}^{\mathrm{BD}}}\mathrm{f}\mathrm{o}\mathrm{r}\kern0.5em {\tau}_{\mathrm{b}}\ge {\tau}_{\mathrm{crit}}^{\mathrm{BD}}\kern0.5em \mathrm{where}\kern0.5em {\tau}_{\mathrm{b}}:\kern0.5em \mathrm{bottom}\ \mathrm{shear}\ \mathrm{stress} \)

  • pfract = (1 − α) ⋅ BLT, the sediment solid fraction.

Bed Ammonium (BNH4; mg N m−3)

$$ \frac{{\mathrm{d}\mathrm{BNH}}_4}{\mathrm{d}t}=\frac{\mathrm{pfract}}{\mathrm{wfract}}\cdot {\mathrm{BD}}_{\mathrm{MIN}}-{{\mathrm{BNH}}_4}_{\;\mathrm{B}\mathrm{U}\mathrm{R}}-{{\mathrm{BNH}}_4}_{\;\mathrm{NITR}}+{{\mathrm{BNO}}_3}_{\;\mathrm{R}\mathrm{ED}}-\frac{h}{\mathrm{wfract}}\cdot {{\mathrm{NH}}_{4\;}}_{\mathrm{DIFF}} $$
  • BNH4BUR: BNH4 burial in inactive sediment layers. \( {{\mathrm{BNH}}_{4\;}}_{\mathrm{BUR}}={\mathrm{burial}}^{{\mathrm{BNH}}_4}\cdot {\mathrm{BNH}}_4 \)

  • BNH4NITR: BNH4 nitrification. \( {{\mathrm{BNH}}_4}_{\;\mathrm{NITR}}={\mathrm{nitr}}_0^{{\mathrm{BNH}}_4}{X}_{{\mathrm{BO}}_2}^{{\mathrm{BNH}}_4}{e}^{k_{\mathrm{nitr}}^{{\mathrm{BNH}}_4}T}\cdot {\mathrm{BNH}}_4 \)

    with \( {X}_{{\mathrm{BO}}_2}^{{\mathrm{BNH}}_4}=\frac{{\mathrm{BO}}_2}{{\mathrm{BO}}_2+{K}_{{\mathrm{BO}}_2}^{{\mathrm{BNH}}_4}} \)

  • BNO3 RED: BNO3 dissimilatory reduction. \( {{\mathrm{BNO}}_3}_{\;\mathrm{RED}}=\%{\mathrm{red}}^{{\mathrm{BNO}}_3}\cdot {{\mathrm{BNO}}_{3\;}}_{\mathrm{DNITR}} \)

    with \( {{\mathrm{BNO}}_{3\;}}_{\mathrm{DNITR}}={\mathrm{denitr}}_0^{{\mathrm{BNO}}_3}{X}_{{\mathrm{BO}}_2}^{{\mathrm{BNO}}_3}{e}^{k_{\mathrm{denitr}}^{{\mathrm{BNO}}_3}T}\cdot {\mathrm{BNO}}_3\kern0.5em \mathrm{where}\kern0.5em {X}_{{\mathrm{BO}}_2}^{{\mathrm{BNO}}_3}=1-\frac{{\mathrm{BO}}_2}{{\mathrm{BO}}_2+{K}_{{\mathrm{BO}}_2}^{{\mathrm{BNO}}_3}} \)

Bed Nitrate (BNO3; mg N m−3)

$$ \frac{\mathrm{d}\mathrm{BNO}{}_3}{\mathrm{d}t}={{\mathrm{BNH}}_4}_{\;\mathrm{NITR}}-{{\mathrm{BNO}}_3}_{\;\mathrm{DNITR}}-\frac{h}{\mathrm{wfract}}\cdot {{\mathrm{NO}}_3}_{\mathrm{DIFF}} $$

Sediment Oxygen Demand (SOD; mg O2 m−3)

$$ \frac{\mathrm{d}\mathrm{SOD}}{\mathrm{d}t}=\frac{\mathrm{pfract}}{\mathrm{wfract}}\cdot {\mathrm{BD}}_{\mathrm{MIN}}^{*}-{\mathrm{SOD}}_{\mathrm{O}\mathrm{XID}}-{\mathrm{SOD}}_{\mathrm{BUR}}-{\mathrm{SOD}}_{\mathrm{RWAT}}-\frac{r_{{\mathrm{O}}_2}^{\mathrm{BD}}}{r_{\mathrm{BD}}^{{\mathrm{BNO}}_3}}\cdot {{\mathrm{BNO}}_3}_{\;\mathrm{DNITR}} $$
  • BD *MIN : Oxygen demand produced by BD mineralization. \( {\mathrm{BD}}_{\mathrm{MIN}}^{*}={r}_{{\mathrm{O}}_2}^{\mathrm{BD}}\cdot {\mathrm{BD}}_{\mathrm{MIN}} \)

  • SODOXID: SOD oxidation. \( {\mathrm{SOD}}_{\mathrm{OXID}}={\mathrm{oxi}}_0^{\mathrm{SOD}}{X}_{{\mathrm{BO}}_2}^{\mathrm{SOD}}{e}^{k_{\mathrm{r}}^{\mathrm{SOD}}T}\cdot \mathrm{SOD} \) with \( {X}_{{\mathrm{BO}}_2}^{\mathrm{SOD}}=\frac{{\mathrm{BO}}_2}{{\mathrm{BO}}_2+{K}_{{\mathrm{BO}}_2}^{\mathrm{SOD}}} \)

  • SODBUR: SOD burial in inactive sediment layers. SODBUR = burialSOD ⋅ SOD

Bed Dissolved Oxygen (BO2; mg O2 m−3)

$$ \frac{{\mathrm{d}\mathrm{BO}}_2}{\mathrm{d}t}=-{{\mathrm{BNH}}_4}_{\;\mathrm{NITR}}^{*}-{\mathrm{SOD}}_{\mathrm{O}\mathrm{XID}}-\frac{h}{\mathrm{wfract}}\cdot {{\mathrm{O}}_2}_{\;\mathrm{DIFF}} $$
  • BNH4 *NITR : BO2 consumed by BNH4 nitrification. \( {{\mathrm{BNH}}_{4\;}}_{\mathrm{NITR}}^{*}={r}_{{\mathrm{O}}_2}^{{\mathrm{BNH}}_4}\cdot {{\mathrm{BNH}}_4}_{\;\mathrm{NITR}} \)

Appendix 2

Table 6 List of parameters forming the biogeochemical model equations, including the value used in the present study, the units, a range of values found in the literature for calibrated parameters and the corresponding references

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guyondet, T., Comeau, L.A., Bacher, C. et al. Climate Change Influences Carrying Capacity in a Coastal Embayment Dedicated to Shellfish Aquaculture. Estuaries and Coasts 38, 1593–1618 (2015). https://doi.org/10.1007/s12237-014-9899-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-014-9899-x

Keywords

Navigation