Skip to main content

Advertisement

Log in

Estimating Relative Sea-Level Rise and Submergence Potential at a Coastal Wetland

Estuaries and Coasts Aims and scope Submit manuscript

Abstract

A tide gauge records a combined signal of the vertical change (positive or negative) in the level of both the sea and the land to which the gauge is affixed; or relative sea-level change, which is typically referred to as relative sea-level rise (RSLR). Complicating this situation, coastal wetlands exhibit dynamic surface elevation change (both positive and negative), as revealed by surface elevation table (SET) measurements, that is not recorded at tide gauges. Because the usefulness of RSLR is in the ability to tie the change in sea level to the local topography, it is important that RSLR be calculated at a wetland that reflects these local dynamic surface elevation changes in order to better estimate wetland submergence potential. A rationale is described for calculating wetland RSLR (RSLRwet) by subtracting the SET wetland elevation change from the tide gauge RSLR. The calculation is possible because the SET and tide gauge independently measure vertical land motion in different portions of the substrate. For 89 wetlands where RSLRwet was evaluated, wetland elevation change differed significantly from zero for 80 % of them, indicating that RSLRwet at these wetlands differed from the local tide gauge RSLR. When compared to tide gauge RSLR, about 39 % of wetlands experienced an elevation rate surplus and 58 % an elevation rate deficit (i.e., sea level becoming lower and higher, respectively, relative to the wetland surface). These proportions were consistent across saltmarsh, mangrove, and freshwater wetland types. Comparison of wetland elevation change and RSLR is confounded by high levels of temporal and spatial variability, and would be improved by co-locating tide gauge and SET stations near each other and obtaining long-term records for both.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig 2

References

  • Baker, T.F. 1993. Absolute sea level measurements, climate change and vertical crustal movements. Global and Planetary Change 8: 149–159.

    Article  Google Scholar 

  • Bevis, M., W. Scherer, and M. Merrifield. 2002. Technical issues and recommendations related to the installation of continuous GPS stations at tide gauges. Marine Geodesy 25: 87–99.

    Article  Google Scholar 

  • Boumans, R.M.J., and J.W. Day Jr. 1993. High precision measurements of sediment elevation in shallow coastal areas using a sedimentation-erosion table. Estuaries 16: 375–380.

    Article  Google Scholar 

  • Cahoon, D.R. 2006. A review of major storm impacts on coastal wetland elevation. Estuaries and Coasts 29(6A): 889–898.

    Article  Google Scholar 

  • Cahoon, D.R., and R.E. Turner. 1989. Accretion and canal impacts in a rapidly subsiding wetland II: feldspar marker horizon technique. Estuaries 12(4): 260–268.

    Article  Google Scholar 

  • Cahoon, D.R., D.J. Reed, and J.W. Day Jr. 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Marine Geology 128: 1–9.

    Article  Google Scholar 

  • Cahoon, D.R., J.W. Day Jr., and D.J. Reed. 1999. The influence of surface and shallow subsurface soil processes on wetland elevation: a synthesis. Current Topics in Wetland Biogeochemistry 3: 72–88.

    Google Scholar 

  • Cahoon, D.R., J. French, T. Spencer, D.J. Reed, and I. Moller. 2000a. Vertical accretion versus elevational adjustment in UK saltmarshes: an evaluation of alternative methodologies. In Coastal and estuarine environments: sedimentology, geomorphology and geoarchaeology, ed. K. Pye and J.R.L. Allen, 223–238. London: Geological Society, Special Publications. 175.

    Google Scholar 

  • Cahoon, D.R., P.E. Marin, B.K. Black, and J.C. Lynch. 2000b. A method for measuring vertical accretion, elevation, and compaction of soft, shallow-water sediments. Journal of Sedimentary Research 70: 1250–1253.

    Article  Google Scholar 

  • Cahoon, D.R., J.C. Lynch, P. Hensel, R. Boumans, B.C. Perez, B. Segura, and J.W. Day Jr. 2002a. High precision measurement of wetland sediment elevation: I. recent improvements to the sedimentation-erosion table. Journal of Sedimentary Research 72(5): 730–733.

    Article  Google Scholar 

  • Cahoon, D.R., J.C. Lynch, B.C. Perez, B. Segura, R. Holland, C. Stelly, G. Stephenson, and P. Hensel. 2002b. High precision measurement of wetland sediment elevation: II. The rod surface elevation table. Journal of Sedimentary Research 72(5): 734–739.

    Article  CAS  Google Scholar 

  • Cahoon, D.R., P. Hensel, J. Rybczyk, K. McKee, C.E. Proffitt, and B.C. Perez. 2003. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. Journal of Ecology 91: 1093–1105.

    Article  Google Scholar 

  • Cahoon, D.R., M.A. Ford, and P. Hensel. 2004. Ecogeomorphology of Spartina patens-dominated tidal marshes: soil organic matter accumulation, marsh elevation dynamics, and disturbance. In The ecogeomorphology of tidal marshes, coastal estuarine studies, vol. 59, ed. S. Fagherazzi, M. Marani, and L.K. Blum, 247–266. Washington: American Geophysical Union.

  • Cahoon, D.R., P. Hensel, T. Spencer, D.J. Reed, K.L. McKee, and N. Saintilan. 2006. Coastal wetland vulnerability to relative sea-level rise: wetland elevation trends and process controls. In Wetlands and natural resource management, ecological studies, vol. 190, ed. J.T.A. Verhoeven, B. Beltman, R. Bobbink, and D. Whigham, 271–292. Berlin: Springer.

    Chapter  Google Scholar 

  • Cahoon, D.R., D.J. Reed, A. Kolker, M. Brinson, J.C. Stevenson, S. Riggs, R. Christian, E. Reyes, C. Voss, and D. Kunz. 2009. Coastal wetland sustainability. In Coastal sensitivity to sea-level rise: a focus on the mid-Atlantic region, a report by the US climate change science program and the subcommittee on global change research, ed. J.G. Titus, K.E. Anderson, D.R. Cahoon, S. Gill, E.R. Thieler, and S.J. Williams, 57–72. Washington: US Environmental Protection Agency.

    Google Scholar 

  • Cahoon, D.R., B.C. Perez, B. Segura, and J.C. Lynch. 2011a. Elevation trends and shrink-swell response of wetland soils to flooding and drying. Estuarine, Coastal and Shelf Science 91: 463–568.

    Article  Google Scholar 

  • Cahoon, D.R., D.A. White, and J.C. Lynch. 2011b. Sediment infilling and wetland formation dynamics in an active crevasse splay of the Mississippi River delta. Geomorphology 131: 57–68.

    Article  Google Scholar 

  • Callaway, J.C., D.R. Cahoon, and J.C. Lynch. 2013. The surface elevation table–marker horizon method for measuring wetland accretion and elevation dynamics. In Methods in Biogeochemistry of Wetlands. SSSA Book Series, vol. 10, ed. R.D. De Laune, K.R. Reddy, C.J. Richardson, J.P. Megonigal, 901–917. Madison: Soil Science Society of America.

  • Cherry, J.A., K.L. McKee, and J.B. Grace. 2009. Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise. Journal of Ecology 97: 67–77.

    Article  Google Scholar 

  • Ford, M.A., and J.B. Grace. 1998. Effect of vertebrate herbivores on soil processes, plant biomass, litter accumulation and soil elevation changes in a coastal marsh. Journal of Ecology 86: 974–982.

    Article  Google Scholar 

  • Intergovernmental Oceanographic Commission of UNESCO. 2006. Manual on Sea-level Measurements and Interpretation, Volume IV: an update to 2006, IOC Manuals and Guides No. 14, vol. IV; JCOMM Technical Report No. 31; WMO/TD No. 1339, Paris, 78 pp.

  • Kaye, C.A., and E.S. Barghoorn. 1964. Late quaternary sea level change and crustal rise at Boston, Massachusetts, with notes on autocompaction of peat. Geological Society of America Bulletin 75: 63–80.

    Article  Google Scholar 

  • Langley, J.A., K.L. McKee, D.R. Cahoon, J.A. Cherry, and J.P. Megonigal. 2009. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proceedings of the National Academy of Sciences 106: 6182–6186.

    Article  CAS  Google Scholar 

  • Lovelock, C.E., V. Bennion, A. Grinham, and D.R. Cahoon. 2011. The role of surface and subsurface processes in keeping pace with sea-level rise in intertidal wetlands of Moreton Bay, Queensland, Australia. Ecosystems 14: 745–757.

    Article  CAS  Google Scholar 

  • McIvor, A., T. Spencer, I. Moller, and M. Spalding. 2013. The response of mangrove soil surface elevation to sea level rise. Natural Coastal Protection Series: Report 3, Cambridge Coastal Research Unit Working Paper 42. Published by The Nature Conservancy and Wetlands International. 59 pages. ISSN 2050–7941. URL: http://coastalresilience.org/science/mangroves/surface-elevation-and-sea-level-rise

  • McKee, K.L. 2011. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuarine, Coastal and Shelf Science 91: 475–483.

    Article  Google Scholar 

  • McKee, K.L., D.R. Cahoon, and I.C. Feller. 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography 16: 545–556.

    Article  Google Scholar 

  • Mossman, H., A. Davy, and A. Grant. 2012. Quantifying local variation in tidal regime using depth-logging fish tags. Estuarine, Coastal and Shelf Science 96: 122–128.

    Google Scholar 

  • NERR. 2012. Sentinel sites program guidance for climate change impacts, National Estuarine Research Reserve System, Office of Ocean and Coastal Resource Management. Silver Spring: NOAA National Ocean Service. 23 pp.

    Google Scholar 

  • Paquette, C.H., K.L. Sundberg, R.M.J. Boumans, and G.L. Chmura. 2004. Changes in salt marsh surface elevation due to variability in evapotranspiration and tidal flooding. Estuaries 27: 82–89.

    Article  Google Scholar 

  • Peltier, W.R. 2001. Global glacial isostatic adjustment and modern instrumental records of relative sea level history. In Sea level rise: history and consequences, vol. 75, ed. B.C. Douglas, M.S. Kearney, and S.P. Leatherman, 65–95. San Diego: Academic Press, International Geophysics Series.

    Chapter  Google Scholar 

  • Rogers, K., and N. Saintilan. 2008. Relationships between surface elevation and groundwater in mangrove forests of southeast Australia. Journal of Coastal Research 24: 63–69.

    Article  Google Scholar 

  • Rybczyk, J.M., and D.R. Cahoon. 2002. Estimating the potential for submergence for two subsiding wetlands in the Mississippi River delta. Estuaries 25: 985–998.

    Article  Google Scholar 

  • Steyer, G.D., C.E. Sasser, J.M. Visser, E.M. Swenson, J.A. Nyman, and R.C. Raynie. 2003. A proposed coast-wide reference monitoring system for evaluating wetland restoration trajectories in Louisiana. Environmental Monitoring and Assessment 81: 107–117.

    Article  Google Scholar 

  • Webb, E.L., D.A. Friess, K. Krauss, D.R. Cahoon, G.R. Guntenspergen, and J. Phelps. 2013. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Climate Change 3: 458–465.

    Article  Google Scholar 

  • Whelan, K.R.T., T.J. Smith III, D.R. Cahoon, J.C. Lynch, and G.H. Anderson. 2005. Groundwater control of mangrove surface elevation: shrink-swell of mangrove soils varies with depth. Estuaries 28: 833–843.

    Article  Google Scholar 

Download references

Acknowledgments

K. Boone and J. Lynch drafted Fig. 1, and J. Lynch drafted Fig. 2. I am deeply indebted to the following individuals for providing critical reviews of earlier draft versions of this manuscript: S. Gill, P. Hensel, B. Horton, J. Lynch, K. Krauss, K. McKee, two anonymous reviewers, and C. Currin. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government. This research was funded by the U.S. Geological Survey Climate and Land Use Research & Development program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald R. Cahoon.

Additional information

Communicated by Carolyn A. Currin

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 87 kb)

ESM 2

(PDF 475 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cahoon, D.R. Estimating Relative Sea-Level Rise and Submergence Potential at a Coastal Wetland. Estuaries and Coasts 38, 1077–1084 (2015). https://doi.org/10.1007/s12237-014-9872-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-014-9872-8

Keywords

Navigation