Skip to main content

Advertisement

Log in

Warming Reduces Pathogen Pressure on a Climate-Vulnerable Seagrass Species

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Climate change is predicted to alter pathogen–host relationships and there is evidence of an increase in disease in both terrestrial and marine environments. Infection rates do not always increase linearly with temperature since thermal tolerance ranges of host and pathogens do not necessarily overlap and the host may benefit from thermal refugia of low or no disease pressure. Here, we demonstrate that climate warming may alleviate pathogen pressure in a climate-vulnerable Mediterranean seagrass, Posidonia oceanica. We tested the impact of warming on infection by Labyrinthula sp.—the causative pathogen of wasting disease—and the combined effect of elevated temperature and disease on photobiology. Infected and control shoots of P. oceanica were incubated at temperatures between 24 and 32 °C, encompassing maximum summer seawater temperatures projected for the Mediterranean Sea during the twenty-first century. Warming reduced the occurrence and severity of the disease and temperatures >28 °C inhibited cell division and growth of Labyrinthula. Photochemical efficiency was not significantly affected by short-term warming or by Labyrinthula infection. These results suggest that, unlike what has been predicted for the majority of pathogen–host relationships, warming may lead to a reduced risk of wasting disease in P. oceanica and relieve pathogen pressure from this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bally, M., and J. Garrabou. 2007. Thermodependent bacterial pathogens and mass mortalities in temperate benthic communities: a new case of emerging disease linked to climate change. Global Change Biology 13: 2078–2088.

    Article  Google Scholar 

  • Beer, S., M. Björk, R. Gademann, and P.J. Ralph. 2001. Measurements of photosynthetic rates in seagrasses. In Global Seagrass Research Methods, ed. F.T. Short and R.G. Coles. B. V.: Elsevier Science.

  • Bull, J.C., E.J. Kenyon, and K.J. Cook. 2012. Wasting disease regulates long-term population dynamics in a threatened seagrass. Oecologia 169: 135–142.

    Article  Google Scholar 

  • Burdick, D.M., F.T. Short, and J. Wolf. 1993. An index to assess and monitor the progression of wasting disease in eelgrass Zostera marina. Marine Ecology Progress Series 94: 83–90.

    Article  Google Scholar 

  • Burnham, K.P., and D.R. Anderson. 2002. Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer.

    Google Scholar 

  • Den Hartog, C. 1987. “Wasting disease” and other dynamic phenomena in Zostera beds. Aquatic Botany 27: 3–14.

    Article  Google Scholar 

  • Díaz-Almela, E., N. Marbà, R. Martinez, R. Santiago, and C.M. Duarte. 2009. Seasonal dynamics of Posidonia oceanica in Magalluf Bay (Mallorca, Spain): Temperature effects on seagrass mortality. Limnology and Oceanography 54: 2170–2182.

    Article  Google Scholar 

  • Duarte, C.M., W.C. Dennison, R.J.W. Orth, and T.J.B. Carruthers. 2008. The charisma of coastal ecosystems: addressing the imbalance. Estuaries and Coasts 31: 233–238.

    Article  Google Scholar 

  • Durako, M.J., and K.M. Kuss. 1994. Effects of Labyrinthula infection on the photosynthetic capacity of Thalassia testudinum. Bulletin of Marine Science 54: 727–732.

    Google Scholar 

  • Eilers, P.H.C., and J.C.H. Peeters. 1988. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecological Modelling 42: 199–215.

    Article  Google Scholar 

  • Forrest, M.J., and M.A. Schlaepfer. 2011. Nothing a hot bath won’t cure: Infection rates of amphibian cythrid fungus correlate negatively with water temperature under natural field settings. PLoS ONE 6(12): e28444.

    Article  CAS  Google Scholar 

  • García, R., M. Holmer, C.M. Duarte, and N. Marbà. 2013. Global warming enhances sulphide stress in a key seagrass species (NW Mediterranean). Global Change Biology. doi:10.1111/gcb.12377.

    Google Scholar 

  • Garcias-Bonet, N., T.D. Sherman, C.M. Duarte, and N. Marba. 2011. Distribution and pathogenicity of the protist Labyrinthula sp. in western Mediterranean seagrass meadows. Estuaries and Coasts 34: 1161–1168.

    Article  Google Scholar 

  • Harvell, C.D., K. Kim, J.M. Burkholder, R.R. Colwell, P.R. Epstein, D.J. Grimes, E.E. Hofmann, E.K. Lipp, A.D.M.E. Osterhaus, R.M. Overstreet, J.W. Porter, G.W. Smith, and G.R. Vasta. 1999. Emerging marine diseases—climate links and anthropogenic factors. Science 285: 1505–1510.

    Article  CAS  Google Scholar 

  • Harvell, C.D., C.E. Mitchell, J.R. Ward, S. Altizer, A.P. Dobson, R.S. Ostfeld, and M.D. Samuel. 2002. Climate warming and disease risks for terrestrial and marine biota. Science 296: 2158–2162.

    Article  CAS  Google Scholar 

  • Hily, C., C. Raffin, A. Brun, and C. den Hartog. 2002. Spatio-temporal variability of wasting disease symptoms in eelgrass meadows of Brittany (France). Aquatic Botany 72: 37–53.

    Article  Google Scholar 

  • Hoegh-Guldberg, O., and J.F. Bruno. 2010. The impact of climate change on the world’s marine ecosystems. Science 328: 1523–1528.

    Article  CAS  Google Scholar 

  • Høi, L., J.L. Larsen, I. Dalsgaard, and L. Dalsgaard. 1998. Occurrence of Vibrio vulnificus biotypes in Danish marine environments. Applied Environmental Microbiology 64: 7–13.

    Google Scholar 

  • Holt, R.A., A. Amandi, J.S. Rohovec, and J.L. Fryer. 1989. Relation of water temperature to bacterial coldwater disease in coho salmon, chinook salmon and rainbow trout. Journal of Aquatic Animal Health 1: 94–101.

    Article  Google Scholar 

  • IPCC. 2007. IPCC Fourth Assessment Report: Climate Change 2007. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel of Climate Change, ed. R.K. Pachauri and A. Reisinger, 104. Geneva, Switzerland.

  • Jordà, G., N. Marbà, and C.M. Duarte. 2012. Mediterranean seagrass vulnerable to regional climate warming. Nature Climate Change 2: 821–824.

    Article  Google Scholar 

  • Lafferty, K.D. 2009. The ecology of climate change and infectious diseases. Ecology 90: 888–900.

    Article  Google Scholar 

  • Marbà, N., and C.M. Duarte. 2010. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Global Change Biology 16: 2366–2375.

    Article  Google Scholar 

  • Martin, D.L., E. Boone, M.M. Caldwell, K.M. Major, and A.A. Boettcher. 2009. Liquid culture and growth quantification of the seagrass pathogen Labyrinthula spp. Mycologia 101: 632–635.

    Article  Google Scholar 

  • McKone, K.L., and C.E. Tanner. 2009. Role of salinity in the susceptibility of eelgrass Zostera marina to the wasting disease pathogen Labyrinthula zosterae. Marine Ecology Progress Series 377: 123–130.

    Article  CAS  Google Scholar 

  • Mordecai, E.A., K.P. Paaijmans, L.R. Johnson, C. Balzer, T. Ben-Horin, E. Moor, A. McNally, S. Pawar, S.J. Ryan, T.C. Smith, and K.D. Lafferty. 2013. Optimal temperature for malaria transmission is dramatically lower than predicted. Ecology Letters 16: 22–30.

    Article  Google Scholar 

  • Muehlstein, L.K., D. Porter, and F.T. Short. 1988. Labyrinthula sp., a marine slime mold producing the symptoms of wasting disease in eelgrass, Zostera marina. Marine Biology 99: 465–472.

    Article  Google Scholar 

  • Muehlstein, L.K., D. Porter, and F.T. Short. 1991. Labyrinthula zosterae sp. nov., the causative agent of wasting disease of eelgrass, Zostera marina. Mycologia 83: 180–191.

    Article  Google Scholar 

  • Nykjaer, L. 2009. Mediterranean Sea surface warming 1985–2006. Climate Research 39: 11–17.

    Article  Google Scholar 

  • Piotrowski, J.S., S.L. Annis, and J.E. Longcore. 2004. Physiology of Batrachochytium dedrobatidis, a cythrid pathogen of amphibians. Mycologia 96: 9–15.

    Article  Google Scholar 

  • Porter, D. 1990. Phylum Labyrinthulomycota. In Handbook of protoctista, ed. L. Margulis, 388–398.

  • R Core Team. 2013. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Ralph, P.J. 1998. Photosynthetic response of laboratory-cultured Halophila ovalis to thermal stress. Marine Ecology Progress Series 171: 123–130.

    Article  Google Scholar 

  • Ralph, P.J., and F.T. Short. 2002. Impact of the wasting disease pathogen Labyrinthula zosterae, on the photobiology of eelgrass Zostera marina. Marine Ecology Progress Series 226: 265–271.

    Article  Google Scholar 

  • Rasmussen, E. 1977. The wasting disease of eelgrass (Zostera marina) and its effects on environmental factors and fauna. In Seagrass ecosystems, a scientific perspective, ed. C.P. McRoy and C. Helfferich, 1–51. New York: Marcel Dekker.

    Google Scholar 

  • Renn, C.E. 1936. The wasting disease of Zostera marina 148–158. Massachusetts: Woods Hole Oceanographic Institution.

    Google Scholar 

  • Robblee, M.B., R.T. Barber, P.R.J. Carlson, M.J. Durako, J.W. Fourqurean, L.K. Muehlstein, D. Porter, L.A. Yarbro, R.T. Zieman, and J.C. Zieman. 1991. Mass mortality of the tropical seagrass Thalassia testudinum in Florida Bay (USA). Marine Ecology Progress Series 71: 297–299.

    Article  Google Scholar 

  • Rosenberg, E., and Y. Ben-Haim. 2002. Microbial diseases of corals and global warming. Environ Microbiol 4: 318–326.

    Article  Google Scholar 

  • Roy, B.A., S. Güsewell, and J. Harte. 2004. Response of plant pathogens and herbivores to a warming experiment. Ecology 85: 2570–2581.

    Article  Google Scholar 

  • Sanchez, E., C. Gallardo, M.A. Gaertner, A. Arribas, and M. Castro. 2004. Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Global and Planetary Change 44: 163–180.

    Article  Google Scholar 

  • Short, F.T., L.K. Muehlstein, and D. Porter. 1987. Eelgrass wasting disease: cause and recurrence of a marine epidemic. Biological Bullentin 173: 557–562.

    Article  Google Scholar 

  • Short, F.T., B.W. Ibelings, and C. den Hartog. 1988. Comparison of a current eelgrass disease to the wasting disease in the 1930s. Aquatic Botany 30: 295–304.

    Article  Google Scholar 

  • Sokolow, S. 2009. Effects of a changing climate on the dynamics of coral infectious disease: a review of the evidence. Dis Aquat Organ 87: 5–18.

    Article  Google Scholar 

  • Sykes, E.E., and D. Porter. 1973. Nutritional studies of Labyrinthula sp. Mycologia 65: 1302–1311.

    Article  CAS  Google Scholar 

  • Trevathan, S.M., A. Kahn, and C. Ross. 2011. Effects of short-term hypersalinity exposure on the susceptibility to wasting disease in the subtropical seagrass Thalassia testudinum. Plant Physiol Biochem 49: 1051–1058.

    Article  CAS  Google Scholar 

  • Vergeer, L.H.T., and C. den Hartog. 1994. Omnipresence of Labyrinthulaceae in seagrasses. Aquatic Botany 48: 1–20.

    Article  Google Scholar 

  • Vezzulli, L., I. Brettar, E. Pezzati, P.C. Reid, R.R. Colwell, M.G. Hofle, and C. Pruzzo. 2012. Long-term effects of ocean warming on the prokaryotic community: evidence from the vibrios. ISME J 6: 21–30.

    Article  Google Scholar 

  • Vishniac, H.S. 1955. The nutritional requirements of isolates of Labyrinthula spp. Journal of Genetics and Microbiology 12: 455–468.

    Article  CAS  Google Scholar 

  • Ward, J.R., and K.D. Lafferty. 2004. The elusive baseline of marine disease: are diseases in ocean ecosystems increasing? PLOS Biology 2: 0542–0547.

    CAS  Google Scholar 

  • Ward, J.R., K. Kim, and D. Harwell. 2007. Temperature affects coral disease resistance and pathogen growth. Marine Ecology Progress Series 329: 115–121.

    Article  Google Scholar 

  • Young, E.L. 1943. Studies on Labyrinthula the etiologic agent of the wasting disease of eel-grass. American Journal of Botany 30: 586–593.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme (TEMSPATH, 254297: FP7-PEOPLE-2009-IEF) awarded to YS Olsen and the ESTRESX project funded by the Spanish Ministry of Economy and Competitivity (CTM2012-32603). M. Potouroglou was funded by a Short-Term Scientific Mission of the COST action ES0906 “Seagrass productivity: from genes to ecosystem management”. The authors thank Fernando Lazaro and Regino Martinéz for their help with fieldwork and collection of samples. We would also like to thank two anonymous reviewers who provided useful comments and helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ylva S. Olsen.

Additional information

Communicated by Nuria Marba

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olsen, Y.S., Potouroglou, M., Garcias-Bonet, N. et al. Warming Reduces Pathogen Pressure on a Climate-Vulnerable Seagrass Species. Estuaries and Coasts 38, 659–667 (2015). https://doi.org/10.1007/s12237-014-9847-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-014-9847-9

Keywords

Navigation