Skip to main content

Advertisement

Log in

Spectral Irradiance, Phytoplankton Community Composition and Primary Productivity in a Salt Marsh Estuary, North Inlet, South Carolina, USA

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

We investigated spatial and temporal changes in spectral irradiance, phytoplankton community composition, and primary productivity in North Inlet Estuary, South Carolina, USA. High concentrations of colored dissolved organic matter (CDOM) were responsible for up to 84 % of the attenuation of photosynthetically available radiation (PAR). Green-yellow wavelengths were the predominant colors of light available at the two sampling sites: Clam Bank Creek and Oyster Landing. Vertical attenuation coefficients of PAR were 0.7–2.1 m−1 with corresponding euphotic zone depths of 1.5–6.7 m. Phytoplankton biomass (as chlorophyll a [chl a]) varied seasonally with a summer maximum of 16 μg chl a l−1 and a winter minimum of 1.4 μg chl a l−1. The phytoplankton community consisted mainly of diatoms, prasinophytes, cryptophytes and haptophytes, with diatoms and prasinophytes accounting for up to 67 % of total chl a. Changes in phytoplankton community composition showed strongest correlations with temperature. Light-saturated chl a-specific rates of photosynthesis and daily primary productivity varied with season and ranged from 1.6 to 14 mg C (mg chl a) −1 h−1 (32–803 mg C m−3 day−1). Calculated daily rates added up to an annual carbon fixation rate of 84 g C m−3 year−1. Overall, changes in phytoplankton community composition and primary productivity in North Inlet showed a strong dependence on temperature, with PAR and spectral irradiance playing a relatively minor role due to short residence times, strong tidal forcing and vertical mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alpine, A.E., and J.E. Cloern. 1988. Phytoplankton growth rates in a light-limited environment, San Francisco Bay. Marine Ecology Progress Series 44: 167–173.

    Article  Google Scholar 

  • Baillie, P.W., and B.L. Welsh. 1980. The effect of tidal resuspension on the distribution of intertidal epipelic algae in an estuary. Estuarine, Coastal and Shelf Science 10: 165–180.

    Article  Google Scholar 

  • Baker, S.M., J.S. Levinton, J.P. Kurdziel, and S.E. Shumway. 1998. Selective feeding and bio-deposition by zebra mussels and their relation to changes in phytoplankton community composition and seston load. Journal of Shellfish Research 17: 1207–1213.

    Google Scholar 

  • Baldwin, B.S., and R.I.E. Newell. 1991. Omnivorous feeding by planktotrophic larvae of the eastern oyster Crassostrea virginica. Marine Ecology Progress Series 78: 285–301.

    Article  Google Scholar 

  • Buzzelli, C., O. Akman, T. Buck, E. Koepfler, J. Morris, and A. Lewitus. 2004. Relationships among water-quality parameters from the North Inlet–Winyah Bay National Estuarine Research Reserve, South Carolina. Journal of Coastal Research 45: 59–74.

    Article  Google Scholar 

  • Clarke, K.R., and R.M. Warwicke. 2001. A further biodiversity index applicable to species lists: Variation in taxonomic distinctness. Marine Ecology Progress Series 216: 265–278.

    Article  Google Scholar 

  • Cloern, J.E. 1987. Turbidity as a control on phytoplankton biomass and productivity in estuaries. Continental Shelf Research 7: 1367–1381.

    Article  Google Scholar 

  • Cressman, K.A., M.A. Mallin, L.A. Leonard, and T.D. Alphin. 2003. Effects of oyster reefs on water quality in a tidal creek estuary. Journal of Shellfish Research 22: 753–762.

    Google Scholar 

  • Cullen, J.J., and M.R. Lewis. 1988. The kinetics of algal photoadaptation in the context of vertical mixing. Journal of Plankton Research 10: 1039–1063.

    Article  Google Scholar 

  • Dame, R.F., R.G. Zingmark, and E. Haskin. 1984. Oyster reefs as processors of estuarine materials. Journal of Experimental Marine Biology and Ecology 83: 239–247.

    Article  CAS  Google Scholar 

  • Dame, R.F. 1996. The ecology of marine bivalves – an ecosystem approach. CRC Marine Science Series. New York: CRC Press.

    Book  Google Scholar 

  • Dame, R., D. Bushek, D. Allen, D. Edwards, L. Gregory, A.J. Lewitus, S. Crawford, E. Koepfler, C. Corbett, B.J. Kjerfve, and T. Prins. 2000. The experimental analysis of tidal creeks dominated by oyster reefs: The premanipulation year. Journal of Shellfish Research 19: 361–369.

    Google Scholar 

  • De Jonge, V.N., and J.E.E. van Beusekom. 1995. Wind- and tide-induced resuspension of sediment and microphytobenthos from tidal flats in the Ems Estuary. Limnology and Oceanography 40: 766–778.

    Article  Google Scholar 

  • Denman, K.L., and A.E. Gargett. 1983. Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean. Limnology and Oceanography 28: 801–815.

    Article  Google Scholar 

  • Falkowski, P.J. 1980. Light-shade adaptation in marine phytoplankton. In Primary productivity in the sea, ed. Paul J. Falkowski. New York: Plenum Press.

    Chapter  Google Scholar 

  • Gieskes, W.W.C., and G.W. Kraay. 1975. The phytoplankton spring bloom in Dutch coastal waters of the North Sea. Netherlands Journal of Sea Research 9: 166–196.

    Article  Google Scholar 

  • Guillard, R.R.L. 1973. Division rates. In Handbook of phycological methods – culture methods and growth measurements, ed. J.E. Stein. Cambridge: Cambridge University Press.

    Google Scholar 

  • Harding, L.W., M.E. Mallonnee, and E.S. Perry. 2002. Towards a predictive understanding of primary productivity in a temperate, partially stratified estuary. Estuarine, Coastal and Shelf Science 55: 437–463.

    Article  CAS  Google Scholar 

  • Harris, G.P. 1978. Photosynthesis, productivity and growth: The physiological ecology of phytoplankton. Archiv für Hydrobiologie 10: 1–171.

    Google Scholar 

  • Higgins, H.W., S.W. Wright, and L. Schlüter. 2011. Quantitative interpretation of chemotaxonomic pigment data. In Phytoplankton pigments — characterization, chemotaxonomy and applications in oceanography, ed. S. Roy, C. Llewellyn, E.S. Egeland, and G. Johnson. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ibelings, B.W., B.M.A. Kroon, and L.R. Mur. 1994. Acclimation of photosystem II in a cyanobacterium and a eukaryotic green alga to high and fluctuating photosynthetic photon flux densities, simulating light regimes induced by mixing in lakes. New Phytologist 128: 407–424.

    Article  CAS  Google Scholar 

  • Jeffrey, S.W., and M. Vesk. 1997. Introduction to marine phytoplankton and their pigment signatures. In Phytoplankton pigments in oceanography, ed. S.W. Jeffrey, R.F. Mantoura, and S.W. Wright. France: UNESCO Publishing.

    Google Scholar 

  • Kirk, J.T.O. 1994. Light and photosynthesis in aquatic ecosystems, 2nd ed. New York: Cambridge University Press.

    Book  Google Scholar 

  • Kjerve, B.J. 1982. Estuarine characteristics, circulation, and mixing. In Estuarine ecology, ed. J.W. Day Jr., C.A.S. Hall, A. Yanez-Arancibia, and L.M. Bahr. New York: John Wiley and Sons.

    Google Scholar 

  • Kjerve, B.J., A. Proehl, F.B. Schwing, H.E. Seim, and M. Marozas. 1982. Temporal and spatial considerations in measuring estuarine water fluxes. In Estuarine comparisons, ed, ed. V.S. Kennedy. New York: Academic Press.

    Google Scholar 

  • Kjerve, B.J. 1986. Circulation and salt flux in a well-mixed estuary. In Physics of shallow estuaries and bays, ed. J. de Kreske. Berlin: Springer Verlag.

    Google Scholar 

  • Knap, A., A. Michaels, A. Close, H.W. Ducklow, and H. Dickson. 1996. Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements. Report no. 19, Reprint from the IOC Manuals and Guides no. 29. Bergen: UNESCO.

    Google Scholar 

  • Kromkamp, J., and M. Limbeek. 1993. Effect of short-term variation in irradiance on light harvesting and photosynthesis of the marine diatom Skeletonema costatum: A laboratory study simulating vertical mixing. Journal of General Microbiology 139: 2277–2284.

    Article  Google Scholar 

  • Kulkarni, N.R., D.L. White, A.J. Lewitus, R.G. Tymowski, and D.C. Yoch. 2005. Dimethylsulfoniopropionate in a salt marsh estuary: Correlations to tidal cycle and phytoplankton assemblage composition. Marine Ecology Progress Series 289: 13–25.

    Article  CAS  Google Scholar 

  • Latasa, M. 2005. Improving estimations of phytoplankton class abundance using CHEMTAX. Marine Ecology Progress Series 329: 13–21.

    Article  Google Scholar 

  • Lawrenz, E., J.L. Pinckney, M.L. Ranhofer, H.L. MacIntyre, and T.L. Richardson. 2010. Spectral irradiance and phytoplankton community composition in a blackwater-dominated estuary, Winyah Bay, South Carolina, USA. Estuaries and Coasts 33: 1186–1201.

    Article  CAS  Google Scholar 

  • Lewis, M.R., and J.C. Smith. 1983. A small volume, short-incubation-time method for the measurement of photosynthesis as a function of incident irradiance. Marine Ecology Progress Series 13: 99–102.

    Article  CAS  Google Scholar 

  • Lewitus, A.J., E.T. Koepfler, and J.T. Morris. 1998. Seasonal variation in the regulation of phytoplankton by nitrogen and grazing in a salt-marsh estuary. Limnology and Oceanography 43: 636–646.

    Article  CAS  Google Scholar 

  • Lewitus, A.J., D.L. White, R.G. Tymowski, M.E. Geesey, S.N. Hymel, and B.A. Noble. 2005. Adapting the CHEMTAX method for assessing phytoplankton taxonomic composition in southeastern US estuaries. Estuaries 28: 160–172.

    Article  CAS  Google Scholar 

  • MacIntyre, H.L., and J.J. Cullen. 1996. Primary production by suspended and benthic microalgae in a turbid estuary: Timescales of variability in San Antonio Bay, Texas. Marine Ecology Progress Series 145: 245–268.

    Article  Google Scholar 

  • MacIntyre, H.L., T.M. Kana, and R.J. Geider. 2000. The effect of water motion on short-term rates of photosynthesis by marine phytoplankton. Trends in Plant Science 5: 12–17.

    Article  CAS  Google Scholar 

  • Mackey, M.D., D.J. Mackey, H.W. Higgins, and S.W. Wright. 1996. CHEMTAX – A program for estimating class abundance from chemical markers: Application to HPLC measurements of phytoplankton. Marine Ecology Progress Series 144: 265–286.

    Article  CAS  Google Scholar 

  • Mallin, M.A., and H.W. Paerl. 1994. Planktonic trophic transfer in an estuary — seasonal, diel, and community structure effects. Ecology 75: 2168–2184.

    Article  Google Scholar 

  • Mallin, M.A., E.C. Esham, K.E. Williams, and J.E. Nearhoof. 1999. Tidal stage variability of fecal coliform and chlorophyll a concentrations in coastal creeks. Marine Pollution Bulletin 38: 414–422.

    Article  CAS  Google Scholar 

  • Malone, T.C. 1976. Phytoplankton productivity in the apex of the New York Bight: Environmental regulation of productivity/chlorophyll a. In The middle Atlantic shelf and New York Bight, Limnology and Oceanography Special Issue 2: 260–272. ed. M.G. Gross.

  • Malone, T.C. 1977. Light-saturated photosynthesis by phytoplankton size fractions in the New York Bight, USA. Marine Biology 42: 281–292.

    Article  CAS  Google Scholar 

  • Marra, J. 1978. Effect of short-term variations in light intensity on photosynthesis of a marine phytoplankter: a laboratory simulation study. Marine Biology 46: 191–202.

    Article  CAS  Google Scholar 

  • Marshalonis, D., and J.L. Pinckney. 2008. Grazing and assimilation rate estimates of hydromedusae from a temperate tidal creek system. Hydrobiologia 606: 203–211.

    Article  Google Scholar 

  • Nelson, J.R., and S. Garda. 1995. Particulate and dissolved spectral absorption on the continental shelf of the southeastern United States. Journal of Geophysical Research – Oceans 100(C5): 8715–8732.

    Article  CAS  Google Scholar 

  • Nelson, N.B., D.A. Siegel, and A.F. Michaels. 1998. Seasonal dynamics of colored dissolved material in the sea. Deep-Sea Research I 45(6): 931–957.

    Article  CAS  Google Scholar 

  • Norén, F., J. Haamer, and O. Lindahl. 1999. Changes in the plankton community passing a Mytilus edulis mussel bed. Marine Ecological Progress Series 191: 187–194.

    Article  Google Scholar 

  • Pennock, J.R., and J.H. Sharp. 1986. Phytoplankton production in the Delaware Estuary: Temporal and spatial variability. Marine Ecology Progress Series 34: 143–155.

    Article  Google Scholar 

  • Phlips, E.J., S. Badylak, and T. Grosskopf. 2002. Factors affecting the abundance of phytoplankton in a restricted subtropical lagoon, the Indian River Lagoon, Florida, USA. Estuarine, Coastal and Shelf Science 55(3): 385–402.

    Article  CAS  Google Scholar 

  • Pinckney, J.L., and R.G. Zingmark. 1993. Biomass and production of benthic microalgal communities in estuarine habitats. Estuaries 16: 887–897.

    Article  CAS  Google Scholar 

  • Pinckney, J.L., D.F. Millie, K.E. Howe, H.W. Paerl, and J.P. Hurley. 1996. Flow scintillation counting of 14C-labelled microalgal photosynthetic pigments. Journal of Plankton Research 18: 1867–1880.

    Article  CAS  Google Scholar 

  • Platt, T., C.L. Gallegos, and W.G. Harrison. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research 38: 687–701.

    Google Scholar 

  • Pomeroy, L.R., W.M. Darley, E.L. Dunn, J.L. Gallagher, E.B. Haines, and D.M. Whitney. 1981. Primary production. In The ecology of a salt marsh, ed. L.R. Pomeroy and J.L. Wiegert. Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Pope, R.M., and E.S. Fry. 1997. Absorption spectrum (380–700) of pure water: II. Integrating cavity measurements. Applied Optics 36: 8710–8723.

    Article  CAS  Google Scholar 

  • Richardson, K., J. Beardall, and J.A. Raven. 1983. Adaptation of unicellular algae to irradiance: An analysis of strategies. New Phytologist 93: 157–191.

    Article  Google Scholar 

  • Riemann, B., T.G. Nielsen, S.J. Horsted, K.P. Bjørnsen, and J. Pock-Steen. 1988. Regulation of phytoplankton biomass in estuarine enclosures. Marine Ecology Progress Series 48: 205–215.

    Article  Google Scholar 

  • Roesler, C.S. 1998. Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique. Limnology and Oceanography 43: 1649–1660.

    Article  CAS  Google Scholar 

  • Roman, M.R., and K.R. Tenore. 1978. Tidal resuspension in Buzzards Bay, Massachusetts. Estuarine and Coastal Marine Science 6: 37–46.

    Article  CAS  Google Scholar 

  • Sathyendranath, S., L. Lazzara, and L. Prieur. 1987. Variation in the spectral values of specific absorption of phytoplankton. Limnology and Oceanography 32: 403–415.

    Article  CAS  Google Scholar 

  • Schlüter, L., F. Mohlenberg, H. Havskum, and S. Larsen. 2000. The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: Testing the influence of light and nutrients on pigment:chlorophyll a ratios. Marine Ecology Progress Series 192: 49–63.

    Article  Google Scholar 

  • Schofield, O., B.P. Prézelin, R.C. Smith, P.M. Stegmann, N.B. Nelson, M.R. Lewis, and K.S. Baker. 1991. Variability in spectral and non-spectral measurements of photosynthetic light utilization efficiencies. Marine Ecology Progress Series 78: 253–271.

    Article  Google Scholar 

  • Schubert, H., S. Sagert, and R.M. Forster. 2001. Evaluation of the different levels of variability in the underwater light field of a shallow estuary. Helgoland Marine Research 55(1): 12–22.

    Article  Google Scholar 

  • Shaffer, G.P., and M.J. Sullivan. 1988. Water column productivity attributable to displaced benthic diatoms in well-mixed shallow estuaries. Journal of Phycology 24: 132–140.

    Google Scholar 

  • Shibata, K. 1958. Spectrophotometry of intact biological materials. Journal of Biochemistry 45: 599–623.

    CAS  Google Scholar 

  • South Carolina Sea Grant Consortium. 1992. Characterization of the physical, chemical and biological conditions and trends in three South Carolina Estuaries: 1970–1985. Charleston: South Carolina Sea Grant Consortium.

    Google Scholar 

  • Steemann-Nielsen, E. 1952. The use of radio-active carbon (14C) for measuring organic production in the sea. Journale Conseil Internationale de l’ exploration de la Mer 16: 117–140.

    Google Scholar 

  • Suggett, D.J., H.L. MacIntyre, and R.J. Geider. 2004. Evaluation of biophysical and optical determinations of light absorption by photosystem II in phytoplankton. Limnology and Oceanography: Methods 2: 316–332.

    Article  Google Scholar 

  • Tzortziou, M., P.J. Neale, C.L. Osburn, J.P. Megonical, N. Maie, and R. Jaffé. 2008. Tidal marshes as a source of optically and chemically distinctive colored dissolved organic matter in the Chesapeake Bay. Limnology and Oceanography 53: 148–159.

    Article  CAS  Google Scholar 

  • Underwood, G.J.C., and J. Kromkamp. 1999. Primary production by phytoplankton and microphytobenthos in estuaries. Advances in Ecological Research 29: 93–153.

    Article  CAS  Google Scholar 

  • Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationalen Vereinigung für theoretische and angewandte. Limnologie 9: 38.

    Google Scholar 

  • Verity, P.G., and D.G. Borkman. 2010. A decade of change in the Skidaway River Estuary: III. Plankton. Estuaries and Coasts 33: 513–540.

    Article  CAS  Google Scholar 

  • Vincent, W.V., N. Bertrand, and J.J. Frenette. 1994. Photoadaptation to intermittent light across the St. Lawrence freshwater–saltwater transition zone. Marine Ecology Progress Series 110: 283–292.

    Article  Google Scholar 

  • Voulgaris, G., and S.T. Meyers. 2004. Net effect of rainfall activity on salt-marsh sediment distribution. Marine Geology 207: 115–129.

    Article  Google Scholar 

  • Wetz, M.S., A.J. Lewitus, E.T. Koepfler, and K.C. Hayes. 2002. Impact of the eastern oyster Crassostrea virginica on microbial community structure in a salt marsh estuary. Aquatic Microbial Ecology 28: 87–97.

    Article  Google Scholar 

  • Wetz, M.S., K.C. Hayes, A.J. Lewitus, J.L. Wolny, and D.L. White. 2006. Variability in phytoplankton pigment biomass and taxonomic composition over tidal cycles in a salt marsh estuary. Marine Ecology Progress Series 320: 109–120.

    Article  CAS  Google Scholar 

  • Wetz, M.S., H.W. Paerl, J.C. Taylor, and J.A. Leonard. 2011. Environmental controls upon picophytoplankton growth and biomass in a eutrophic estuary. Aquatic Microbial Ecology 63: 133–143.

    Article  Google Scholar 

  • White, J.R., and M.R. Roman. 1992. Seasonal study of grazing by metazoan zooplankton in the mesohaline Chesapeake Bay. Marine Ecology Progress Series 8: 251–261.

    Article  Google Scholar 

  • Wright, S.W., D.P. Thomas, J.H. Marchant, H.W. Higgins, M.D. Mackey, and D.J. Mackey. 1996. Analysis of phytoplankton of the Australian sector of the Southern Ocean: Comparison of microscopy and size frequency data with interpretations of pigment HPLC data using the ‘CHEMTAX’ matrix factorization program. Marine Ecology Progress Series 144: 285–298.

    Article  CAS  Google Scholar 

  • Yoder, J.A., L.P. Atkinson, S.S. Bishop, E.E. Hofmann, and T.N. Lee. 1983. Effect of upwelling on phytoplankton productivity of the outer southeastern United States continental shelf. Continental Shelf Research 1: 385–404.

    Article  Google Scholar 

  • Zeeman, S.I. 1982. Phytoplankton photosynthesis and its relation to light intensity in a turbid estuary and the nearshore coastal ocean. PhD dissertation, University of South Carolina, Columbia, SC.

Download references

Acknowledgements

We thank Katherine Sandel, Ben Lakish, Bridget Bachman, Emily Goldman, Tracy Buck and Amy Willman for their help with field measurements and sample collection. We also thank Hugh MacIntyre for valuable guidance and Jay Pinckney for statistical advice and access to the HPLC facility of the Estuarine Ecology Laboratory at USC. The support staff at the Belle W. Baruch Institute for Marine and Coastal Science in Georgetown, South Carolina and the NIWB-NERR provided the meteorological, water quality and nutrient data. Two anonymous reviewers and Associate Editor Dr. Charles Gallegos provided insightful and valuable comments on the manuscript, for which we are grateful. This research was supported by a NOAA-NERR Graduate Research Fellowship (Award no. NA09NOS4200051) and the Slocum-Lunz Foundation, both to E. Lawrenz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tammi L. Richardson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 595 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawrenz, E., Smith, E.M. & Richardson, T.L. Spectral Irradiance, Phytoplankton Community Composition and Primary Productivity in a Salt Marsh Estuary, North Inlet, South Carolina, USA. Estuaries and Coasts 36, 347–364 (2013). https://doi.org/10.1007/s12237-012-9567-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-012-9567-y

Keywords

Navigation