Skip to main content

Advertisement

Log in

Effects of an Acute Hypoxic Event on Microplankton Community Structure in a Coastal Harbor of Southern California

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Fish mortality and hypoxic events occur in many coastal and inland systems and may result from natural or anthropogenically mediated processes. The effects of consequent changes in water biogeochemistry have been investigated for communities of benthic invertebrates and pelagic metazoans. The responses of micro-plankton assemblages, however, have remained largely unstudied. The northern basin of King Harbor, a small embayment within Santa Monica Bay, CA, USA, suffered a massive fish kill in March 2011 as a consequence of acute hypoxia. Dissolved oxygen concentrations < 0.1 ml l−1 were measured in the northern basin of the harbor for several days following the mortality event, and a strong spatial gradient of oxygen was observed from the northern basin to waters outside the harbor. The microplankton community within King Harbor differed significantly from a diatom-dominated community present in neighboring Santa Monica Bay. The latter region appeared unaffected by physicochemical changes, induced by the fish kill, that were observed within the harbor. A trophic shift was observed throughout King Harbor from a photoautotrophic-dominated assemblage to one of heterotrophic forms, with relative abundances of bacterivorous ciliates increasing by more than 80 % in the most impacted part of the harbor. Significant changes in community structure were observed together with dramatically reduced photosynthetic yield of the remaining phytoplankton, indicating severe physiological stress during the extreme hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arar, E.J., and G.B. Collins. 1997. In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence. US Environmental Protection Agency, Cincinnati: National Exposure Research Laboratory Office of Research and Development.

    Google Scholar 

  • Backer, L.C. 2009. Impacts of Florida red tides on coastal communities. Harmful Algae 8(4): 618–622.

    Article  Google Scholar 

  • Barboza, T., and K.R. Weiss. 2011. Redondo Beach fish die-off: tests show oxygen levels at ‘almost zero’. Los Angeles: Los Angeles Times.

    Google Scholar 

  • Bell, G.W., and D.B. Eggleston. 2005. Species-specific avoidance responses by blue crabs and fish to chronic and episodic hypoxia. Marine Biology 146(4): 761–770.

    Article  Google Scholar 

  • Bograd, S.J., C.G. Castro, E. Di Lorenzo, D.M. Palacios, H. Bailey, W. Gilly, and F.P. Chavez. 2008. Oxygen declines and the shoaling of the hypoxic boundary in the California Current. Geophysical Research Letters 35(12): L12607.

    Article  Google Scholar 

  • Borics, G., I. Grigorszky, S. Szabó, and J. Padisák. 2000. Phytoplankton associations in a small hypertrophic fishpond in East Hungary during a change from bottom-up to top-down control. Hydrobiologia 424(1): 79–90.

    Article  Google Scholar 

  • Boullion, T.L. 1985. The effect of summer hypoxia on plankton density and community structure off the Louisiana coast. American Zoologist 25(4): A10-A10.

    Google Scholar 

  • Bray, J.R., and J.T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349.

    Article  Google Scholar 

  • Britto, D.T., and H.J. Kronzucker. 2002. NH +4 toxicity in higher plants: a critical review. Journal of Plant Physiology 159: 567–584.

    Article  CAS  Google Scholar 

  • Clarke, K.R., and R.M. Warwick. 2001. Change in marine communities: an approach to statistical analysis and interpretation, 2nd ed. UK: PRIMER-E, Plymouth.

    Google Scholar 

  • Cohen, Y., B.B. Jørgensen, N.P. Revsbech, and R. Poplawski. 1986. Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Applied and Environmental Microbiology 51(2): 398–407.

    CAS  Google Scholar 

  • Colwell, R.K. 2009. EstimateS: statistical estimation of species richness and shared species from samples. Version 8.2. User's guide and application.

  • Corcoran, A.A., and R.F. Shipe. 2011. Inshore–offshore and vertical patterns of phytoplankton biomass and community composition in Santa Monica Bay, CA (USA). Estuarine, Coastal and Shelf Science 94: 24–35.

    Article  Google Scholar 

  • Diaz, R.J., and R. Rosenberg. 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology: An Annual Review 33: 245–303.

    Google Scholar 

  • Diaz, R.J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321(5891): 926–929.

    Article  CAS  Google Scholar 

  • Eby, L.A., and B. Crowder. 2002. Hypoxia-based habitat compression in the Neuse River Estuary: context-dependent shifts in behavioral avoidance thresholds. Canadian Journal of Fisheries and Aquatic Sciences 59(6): 952–965.

    Article  Google Scholar 

  • Eby, L.A., and L.B. Crowder. 2004. Effects of hypoxic disturbances on an estuarine nekton assemblage across multiple scales. Estuaries 27(2): 342–351.

    Article  Google Scholar 

  • Falkowski, P.G., and J.A. Raven. 2007. Aquatic photosynthesis, 2nd ed. Princeton: Princeton University Press.

    Google Scholar 

  • Fenchel, T., L.D. Kristensen, and L. Rasmussen. 1990. Water column anoxia: vertical zonation of planktonic protozoa. Marine Ecology Progress Series 62: 1–10.

    Article  Google Scholar 

  • Fenchel, T.O.M., T.E.D. Perry, and A. Thane. 1977. Anaerobiosis and symbiosis with bacteria in free-living ciliates. Journal of Eukaryotic Microbiology 24(1): 154–163.

    Article  CAS  Google Scholar 

  • Gannon, D.P., E.J.B. McCabe, S.A. Camilleri, J.G. Gannon, M.K. Brueggen, A.A. Barleycorn, V.I. Palubok, G.J. Kirkpatrick, and R.S. Wells. 2009. Effects of Karenia brevis harmful algal blooms on nearshore fish communities in southwest Florida. Marine Ecology Progress Series 378: 171–186.

    Article  CAS  Google Scholar 

  • Gasol, J.M., J. García-Cantizano, R. Massana, R. Guerrero, and C. Pedrós-Alió. 1993. Physiological ecology of a metalimnetic Cryptomonas population: relationships to light, sulfide and nutrients. Journal of Plankton Research 15(3): 255–275.

    Article  CAS  Google Scholar 

  • Goodman, J.L., K.A. Moore, and W.C. Dennison. 1995. Photosynthetic responses of eelgrass (Zostera marina L.) to light and sediment sulfide in a shallow barrier island lagoon. Aquatic Botany 50(1): 37–47.

    Article  Google Scholar 

  • Grantham, B.A., F. Chan, K.J. Nielsen, D.S. Fox, J.A. Barth, A. Huyer, J. Lubchenco, and B.A. Menge. 2004. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature 429(6993): 749–754.

    Article  CAS  Google Scholar 

  • Gray, J.S., R.S.-S. Wu, and Y.Y. Or. 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Marine Ecology Progress Series 238: 249–279.

    Article  Google Scholar 

  • Hötzel, G., and R. Croome. 1999. A phytoplankton methods manual for Australian freshwaters, 58. Canberra: Land and Water Resources Research and Development Corporation.

    Google Scholar 

  • Johannes, R.E. 1965. Influence of marine protozoa on nutrient regeneration. Limnology and Oceanography 10(3): 434–442.

    Article  Google Scholar 

  • Jones, R.J., and O. Hoegh-Guldberg. 2001. Diurnal changes in the photochemical efficiency of the symbiotic dinoflagellates (Dinophyceae) of corals: photoprotection, photoinactivation and the relationship to coral bleaching. Plant, Cell & Environment 24(1): 89–99.

    Article  CAS  Google Scholar 

  • Kemp, W.M., W.R. Boynton, J.E. Adolf, D.F. Boesch, W.C. Boicourt, G. Brush, J.C. Cornwell, T.R. Fisher, P.M. Glibert, J.D. Hagy, L.W. Harding, E.D. Houde, D.G. Kimmel, W.D. Miller, R.I.E. Newell, M.R. Roman, E.M. Smith, and J.C. Stevenson. 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology Progress Series 303: 1–29.

    Article  Google Scholar 

  • Kolber, Z., and P.G. Falkowski. 1993. Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnology and Oceanography 38(8): 1646–1665.

    Article  CAS  Google Scholar 

  • La, V.T., and S.J. Cooke. 2011. Advancing the science and practice of fish kill investigations. Reviews in Fisheries Science 19(1): 21–33.

    Article  Google Scholar 

  • Levin, L.A. 2003. Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanography and Marine Biology: An Annual Review 41: 1–45.

    Google Scholar 

  • Lowe, J.A., D.R.G. Farrow, A.S. Pait, S.J. Arenstam, E.F. Lavan. 1991. Fish kills in coastal waters 1980–1989. Strategic Environmental Assessments Division, Office of Ocean Resources Conservation and Assessment, National Ocean Service, National Oceanic and Atmospheric Administration.

  • Marcus, N.H. 2001. Zooplankton: responses to and consequences of hypoxia. In Coastal hypoxia: conseqences for living resources and ecosystems, ed. N.N. Rabalais and R.E. Turner. Washington DC: American Geophysical Union.

    Google Scholar 

  • Marti-Cardona, B., T.E. Steissberg, S.G. Schladow, and S.J. Hook. 2008. Relating fish kills to upwellings and wind patterns in the Salton Sea. Hydrobiologia 604: 85–95.

    Article  Google Scholar 

  • McInnes, A.S., and A. Quigg. 2010. Near-annual fish kills in small embayments: casual vs. causal factors. Journal of Coastal Research 26(5): 957–966.

    Article  Google Scholar 

  • Meehl, G.A., T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, J.M. Gregory, A. Kitoh, R. Knutti, J.M. Murphy, A. Noda, S.C.B. Raper, I.G. Watterson, A.J. Weaver, and Z.-C. Zhao. 2007. Global climate change projections. In Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller. Cambridge: Cambridge University Press.

    Google Scholar 

  • Orrico, C.M., C. Moore, D. Romanko, A. Derr, A.H. Barnard, C. Janzen, N. Larson, D. Murphy, R. Johnson, J. Bauman. 2007. WQM: a new integrated water quality monitoring package for long-term in-situ observation of physical and biogeochemical parameters. Oceans 2007 MTS/IEEE, Vancouver.

  • Palsson, W.A., R.E. Pacunski, T.R. Parra, and J. Beam. 2008. The effects of hypoxia on marine fish populations in southern Hood Canal, Washington. Mitigating Impacts of Natural Hazards on Fishery Ecosystems 64: 255–280.

    Google Scholar 

  • Poertner, H.O., and M.A. Peck. 2010. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. Journal of Fish Biology 77(8): 1745–1779.

    Article  Google Scholar 

  • Ptacnik, R., U. Sommer, T. Hansen, and V. Martens. 2004. Effects of microzooplankton and mixotrophy in an experimental planktonic food web. Limnology and Oceanography 49(4): 1435–1445.

    Article  Google Scholar 

  • Rodriguez, N., and O. Duran. 2010. Monthly bigeye tuna catches forecasting using wavelet functional autoregression. Los Alamitos: IEEE Computer Soc.

    Google Scholar 

  • Rzepka, A., J. Krupa, and I. Lesak. 2005. Effect of hypoxia on photosynthetic activity and antioxidative response in gametophores of Mnium undulatum. Acta Physiologiae Plantarum 27(2): 205–212.

    Article  CAS  Google Scholar 

  • Simpson, E.H. 1949. Measurement of diversity. Nature 163: 688.

    Article  Google Scholar 

  • Stachowitsch, M., B. Riedel, M. Zuschin, and R. Machan. 2007. Oxygen depletion and benthic mortalities: the first in situ experimental approach to documenting an elusive phenomenon. Limnology and Oceanography: Methods 5: 344–352.

    Article  Google Scholar 

  • Stauffer, B., A. Gellene, A. Schnetzer, E. Seubert, C. Oberg, G. Sukhatme, D. Caron. 2012. An oceanographic, meteorological and biological ‘perfect storm’ yields a massive fish kill. Marine Ecology Progress Series, in press.

  • Strickland, J.D.H., and T.R. Parsons. 1972. A practical handbook of seawater analysis, 2nd ed. Ottawa: Fisheries Research Board of Canada.

    Google Scholar 

  • Thronson, A., and A. Quigg. 2008. Fifty-five years of fish kills in coastal Texas. Estuaries and Coasts 31(4): 802–813.

    Article  CAS  Google Scholar 

  • Utermohl, H. 1931. Neue Wege in der quantitativen Erfassung des Plankton. Verhandlungen der Internationalen Vereinigung fuer Theoretische Limnologie Stuttgart 5: 567–596.

    Google Scholar 

  • Utermohl, H. 1958. Zur Gewassertypenfrage tropischer Seen. Verhandlungen Internationalen Vereinigung Limnologie 13(1): 236–251.

    Google Scholar 

  • Venrick, E.L. 2002. Floral patterns in the California Current System off southern California: 1990–1996. Journal of Marine Research 60: 171–189.

    Article  Google Scholar 

  • Wetz, M.S., E.A. Hutchinson, R.S. Lunetta, H.W. Paerl, and J.C. Taylor. 2011. Severe droughts reduce estuarine primary productivity with cascading effects on higher trophic levels. Limnology and Oceanography 56(2): 627–638.

    Article  CAS  Google Scholar 

  • Wilcox, R.R. 2003. Applying contemporary statistical techniques. New York: Academic.

    Google Scholar 

  • Wu, R.S.S. 2002. Hypoxia: from molecular responses to ecosystem responses. Marine Pollution Bulletin 45(1–12): 35–45.

    Article  CAS  Google Scholar 

  • Yoshino, K., T. Hamada, K. Yamamoto, Y. Hayami, S. Yamaguchi, and K. Ohgushi. 2010. Effects of hypoxia and organic enrichment on estuarine macrofauna in the inner part of Ariake Bay. Hydrobiologia 652(1): 23–38.

    Article  CAS  Google Scholar 

  • Zhang, H., S.A. Ludsin, D.M. Mason, A.T. Adamack, S.B. Brandt, X. Zhang, D.G. Kimmel, M.R. Roman, and W.C. Boicourt. 2009. Hypoxia-driven changes in the behavior and spatial distribution of pelagic fish and mesozooplankton in the northern Gulf of Mexico. Journal of Experimental Marine Biology and Ecology 381: S80–S91.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the National Science Foundation (CCR-0120778), National Oceanic and Atmospheric Administration National Sea Grant College Program (NA10OAR4170058), and National Oceanic and Atmospheric Administration MERHAB Program (NA05NOS4781228). The authors would like to thank the members of the City of Redondo Beach Fire Department, the Los Angeles County Lifeguards, and the City of Redondo Beach for their assistance in site access and sample collection. The authors also acknowledge R.A. Schaffner for assistance in mapping, A.C. Jones for guidance in analyses of community structure, and E.L. Seubert, V.L. Campbell, and P.E. Connell for assistance in collection and processing of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth A. Stauffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stauffer, B.A., Schnetzer, A., Gellene, A.G. et al. Effects of an Acute Hypoxic Event on Microplankton Community Structure in a Coastal Harbor of Southern California. Estuaries and Coasts 36, 135–148 (2013). https://doi.org/10.1007/s12237-012-9551-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-012-9551-6

Keywords

Navigation