Skip to main content
Log in

High Sulfide Intrusion in Five Temperate Seagrasses Growing Under Contrasting Sediment Conditions

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Five temperate seagrasses (Amphibolis antartica, Halophila ovalis, Posidonia australis, Posidonia sinuosa and Zostera nigricaulis) were surveyed along the south-west coast of Western Australia. These morphological different seagrasses grow in contrasting sediments with large variations in sedimentary organic matter, carbonate and iron contents. We tested if sulfur composition in the plants responded to sulfur dynamics in the sediments and if plant morphology affected the sulfur composition of the plants. The sediments were characterized by low sulfate reduction rates (<9 mmol m−2day−1), low concentrations of dissolved sulfides in the pore waters (<74 μM) and low burial of sulfides (total reducible sulfur <0.8 mol m−2) in the sediments. However, all seagrasses showed high intrusion in the below-ground parts with up to 84 % of the sulfur derived from sedimentary sulfides. There were no direct links between sulfur in the plants and sulfur dynamics in the sediments, probably due to low iron contents in the sediments limiting the buffering capacity of the sediments and exposing the plants to sulfides despite low rates of production and low pools of sulfides. The intrusion was linked between plant compartments (roots, rhizomes and leaves) for the two small species (H. ovalis and Z. nigricaulis), whereas the intrusion into the leaves was limited for the larger species (P. australis and P. sinuosa) and for A. antarctica, where extensive rhizomes and roots and the long stem for A. antarctica separate the leaves from the sediment compartment. Elevated intrusion was observed at two study locations, where natural deposition of organic matter or nutrient enrichment may be contributing factors to enhanced sulfide pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baden, S., C. Bostrom, S. Tobiasson, H. Arponen, and P.O. Moksnes. 2010. Relative importance of trophic interactions and nutrient enrichment in seagrass ecosystems: a broad-scale field experiment in the Baltic-Skagerrak area. Limnology and Oceanography 55: 1435–1448.

    Article  CAS  Google Scholar 

  • Bastyan, G.R., and M.L. Cambridge. 2008. Transplantation as a method for restoring the seagrass Posidonia australis. Estuarine Coastal and Shelf Science 79: 289–299.

    Article  Google Scholar 

  • Berg, P., and K.M. Mcglathery. 2001. A high-resolution pore water sampler for sandy sediments. Limnology and Oceanography 46: 203–210.

    Article  CAS  Google Scholar 

  • Blaabjerg, V., and K.N. Mouritsen. 1998. Diel cycles of sulphate reduction rates in sediments of a Zostera marina bed (Denmark). Aquatic Microbial Ecology 15: 97–102.

    Article  Google Scholar 

  • Bulthuis, D.A., and W.J. Woelkerling. 1983. Seasonal variation in standing crop, density and leaf growth-rate of the seagrass, Heterozostera tasmanica, in Western Port and Port Phillip Bay, Victoria, Australia. Aquatic Botany 16: 111–136.

    Article  Google Scholar 

  • Calleja, M.L., N. Marba, and C.M. Duarte. 2007. The relationship between seagrass (Posidonia oceanica) decline and sulfide porewater concentration in carbonate sediments. Estuarine Coastal and Shelf Science 73: 583–588.

    Article  Google Scholar 

  • Cambridge, M.L., and P.J. Hocking. 1997. Annual primary production and nutrient dynamics of the seagrasses Posidonia sinuosa and Posidonia australis in south-western Australia. Aquatic Botany 59: 277–295.

    Article  Google Scholar 

  • Cambridge, M.L., and G.A. Kendrick. 2009. Contrasting responses of seagrass transplants (Posidonia australis) to nitrogen, phosphorus and iron addition in an estuary and a coastal embayment. Journal of Experimental Marine Biology and Ecology 371: 34–41.

    Article  Google Scholar 

  • Cambridge, M.L., Fraser, M.W., Holmer, M., Kuo, J., and G.A. Kendrick. 2012. Hydrogen sulphide intrusion in seagrasses from Shark Bay, Western Australia. Marine and Freshwater Research (in press)

  • Campell, S.J., and C.J. Miller. 2002. Shoot and abundance characteristics of the seagrass Heterozostera tasmanica in Westernport estuary (south-east Australia). Aquatic Botany 73: 33–46.

    Article  Google Scholar 

  • Canfield, D.E., B. Thamdrup, and J.W. Hansen. 1993. The anaerobic degradation of organic-matter in Danish coastal sediments—iron reduction, manganese reduction, and sulfate reduction. Geochimica et Cosmochimica Acta 57: 3867–3883.

    Article  CAS  Google Scholar 

  • Carruthers, T.J.B., W.C. Dennison, G.A. Kendrick, M. Waycott, D.I. Walker, and M.L. Cambridge. 2007. Seagrasses of south-west Australia: a conceptual synthesis of the world's most diverse and extensive seagrass meadows. Journal of Experimental Marine Biology and Ecology 350: 21–45.

    Article  Google Scholar 

  • Cline, J.D. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography 14: 454.

    Article  CAS  Google Scholar 

  • Duarte, C.M., M. Merino, N.S.R. Agawin, J. Uri, M.D. Fortes, M.E. Gallegos, N. Marbà, and M.A. Hemminga. 1998. Root production and belowground seagrass biomass. Marine Ecology Progress Series 171: 97–108.

    Article  Google Scholar 

  • Fossing, H., and B.B. Jorgensen. 1989. Measurement of bacterial sulfate reduction in sediments—evaluation of a single-step chromium reduction method. Biogeochemistry 8: 205–222.

    Article  CAS  Google Scholar 

  • Frederiksen, M.S., and R.N. Glud. 2006. Oxygen dynamics in the rhizosphere of Zostera marina: a two-dimensional planar optode study. Limnology and Oceanography 51: 1072–1083.

    Article  Google Scholar 

  • Frederiksen, M.S., M. Holmer, J. Borum, and H. Kennedy. 2006. Temporal and spatial variation of sulfide invasion in eelgrass (Zostera marina) as reflected by its sulfur isotopic composition. Limnology and Oceanography 51: 2308–2318.

    Article  CAS  Google Scholar 

  • Frederiksen, M.S., M. Holmer, E. Diaz-Almela, N. Marba, and C.M. Duarte. 2007. Sulfide invasion in the seagrass Posidonia oceanica at Mediterranean fish farms: assessment using stable sulfur isotopes. Marine Ecology Progress Series 345: 93–104.

    Article  CAS  Google Scholar 

  • Garcias-Bonet, N., N. Marba, M. Holmer, and C.M. Duarte. 2008. Effects of sediment sulfides on seagrass Posidonia oceanica meristematic activity. Marine Ecology Progress Series 372: 1–6.

    Article  CAS  Google Scholar 

  • Hillman, K., A.J. McComb, and D.I. Walker. 1995. The distribution, biomass and primary production of the seagrass Halophila ovalis in the Swan-Canning Estuary, Western-Australia. Aquatic Botany 51: 1–54.

    Article  Google Scholar 

  • Holmer, M., and R.M. Nielsen. 2007. Effects of filamentous algal mats on sulfide invasion in eelgrass (Zostera marina). Journal of Experimental Marine Biology and Ecology 353: 245–252.

    Article  CAS  Google Scholar 

  • Holmer, M., F.Ø. Andersen, S.L. Nielsen, and H.T.S. Boschker. 2001. The importance of sulfate reduction based mineralization for nutrient regeneration in tropical seagrass sediments. Aquatic Botany 71: 1–17.

    Article  CAS  Google Scholar 

  • Holmer, M., C.M. Duarte, H.T.S. Boschker, and C. Barron. 2004. Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments. Aquatic Microbial Ecology 36: 227–237.

    Article  Google Scholar 

  • Holmer, M., C.M. Duarte, and N. Marba. 2005a. Iron additions reduce sulfate reduction rates and improve seagrass growth on organic-enriched carbonate sediments. Ecosystems 8: 721–730.

    Article  CAS  Google Scholar 

  • Holmer, M., M.S. Frederiksen, and H. Møllegaard. 2005b. Sulfur accumulation in eelgrass (Zostera marina) and effect of sulfur on eelgrass growth. Aquatic Botany 81: 367–379.

    Article  CAS  Google Scholar 

  • Holmer, M., O. Pedersen, D. Krause-Jensen, B. Olesen, M.H. Petersen, S. Schopmeyer, M. Koch, B.A. Lomstein, and H.S. Jensen. 2009. Sulfide intrusion in the tropical seagrasses Thalassia testudinum and Syringodium filiforme. Estuarine Coastal and Shelf Science 85: 319–326.

    Article  CAS  Google Scholar 

  • Holmer, M., P. Wirachwong, and M.S. Thomsen. 2011. Negative effects of stress-resistant drift algae and high temperature on a small ephemeral seagrass species. Marine Biology 158: 297–309.

    Article  Google Scholar 

  • Jensen, S.I., M. Kuhl, R.N. Glud, L.B. Jorgensen, and A. Prieme. 2005. Oxic microzones and radial oxygen loss from roots of Zostera marina. Marine Ecology Progress Series 293: 49–58.

    Article  CAS  Google Scholar 

  • Kendrick, G.A., S. Langtry, J. Fitzpatrick, R. Griffiths, and C.A. Jacoby. 1998. Benthic microalgae and nutrient dynamics in wave-disturbed environments in Marmion Lagoon, Western Australia, compared with less disturbed mesocosms. Journal of Experimental Marine Biology and Ecology 228: 83–105.

    Article  Google Scholar 

  • Kendrick, G.A., M.J. Aylward, B.J. Hegge, M.L. Cambridge, K. Hillman, A. Wyllie, and D.A. Lord. 2002. Changes in seagrass coverage in Cockburn Sound, Western Australia between 1967 and 1999. Aquatic Botany 73: 75–87.

    Article  Google Scholar 

  • Kennedy, H., J. Beggins, C.M. Duarte, J.W. Fourqurean, M. Holmer, N. Marbà, and J.J. Middelburg. 2010. Seagrass sediments as a global carbon sink: isotopic constraints. Global Biogeochemical Cycles 24: GB4026. doi:10.1029/2010GB003848.

    Article  Google Scholar 

  • Koch, M.S., S.A. Schopmeyer, M. Holmer, C.J. Madden, and C. Kyhn-Hansen. 2007. Thalassia testudinum response to the interactive stressors hypersalinity, sulfide and hypoxia. Aquatic Botany 87: 104–110.

    Article  CAS  Google Scholar 

  • Krause-Jensen, D., J. Carstensen, S.L. Nielsen, T. Dalsgaard, P.B. Christensen, H. Fossing, and M.N. Rasmussen. 2011. Sea bottom characteristics affect depth limit of eelgrass Zostera marina. Marine Ecology Progress Series 425: 91–102.

    Article  Google Scholar 

  • Marba, N., and D.I. Walker. 1999. Growth, flowering, and population dynamics of temperate Western Australian seagrasses. Marine Ecology Progress Series 184: 105–118.

    Article  Google Scholar 

  • Marbà, N., M. Holmer, E. Gacia, C. Barrón, et al. 2006. Seagrass beds and coastal biogeochemistry. In Seagrasses: biology, ecology and conservation, ed. A.W.D. Larkum and J.R. Orth, 135–157. The Netherlands: Springer.

    Chapter  Google Scholar 

  • Mascaro, O., T. Valdemarsen, M. Holmer, M. Perez, and J. Romero. 2009. Experimental manipulation of sediment organic content and water column aeration reduces Zostera marina (eelgrass) growth and survival. Journal of Experimental Marine Biology and Ecology 373: 26–34.

    Article  Google Scholar 

  • McMahon, K., E. Young, S. Montgomery, J. Cosgrove, J. Wilshaw, and D.I. Walker. 1997. Status of a shallow seagrass system, Geographe Bay, south-western Australia. Journal of the Royal Society of Western Australia 80: 255–262.

    Google Scholar 

  • Nielsen, S.L., K. Sand-Jensen, J. Borum, and O. Geertz-Hansen. 2002. Depth colonization of eelgrass (Zostera marina) and macroalgae as determined by water transparency in Danish coastal waters. Estuaries 25: 1025–1032.

    Article  Google Scholar 

  • Oakes, J.M., and R.M. Connolly. 2004. Causes of sulfur isotope variability in the seagrass, Zostera capricorni. Journal of Experimental Marine Biology and Ecology 302: 153–164.

    Article  CAS  Google Scholar 

  • Pedersen, O., J. Borum, C.M. Duarte, and M.D. Fortes. 1998. Oxygen dynamics in the rhizosphere of Cymodocea rotundata. Marine Ecology Progress Series 169: 283–288.

    Article  CAS  Google Scholar 

  • Pedersen, O., T. Binzer, and J. Borum. 2004. Sulphide intrusion in eelgrass (Zostera marina L.). Plant Cell and Environment 27: 595–602.

    Article  CAS  Google Scholar 

  • Raven, J.A., and C.M. Scrimgeour. 1997. The influence of anoxia on plants of saline habitats with special reference to the sulphur cycle. Annals of Botany 79: 79–86.

    Article  CAS  Google Scholar 

  • Smit, A.J., A. Brearley, G.A. Hyndes, P.S. Lavery, and D.I. Walker. 2006. δ15N and δ13C analysis of a Posidonia sinuosa seagrass bed. Aquatic Botany 84: 277–282.

    Article  CAS  Google Scholar 

  • Sørensen, J. 1982. Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Applied Environmental Microbiology 43: 319–324.

    Google Scholar 

  • Stookey, L.L. 1970. Ferrozine—a new spectrophotometric reagent for iron. Analytical Chemistry 42: 779–781.

    Article  CAS  Google Scholar 

  • Thomsen, M.S., T. Wernberg, A.H. Engelen, F. Tuya, M.A. Vanderklift, M. Holmer, K.J. McGlathery, F. Arenas, J. Kotta, and B.R. Sillimann. 2012. A meta-analysis of seaweed impacts on seagrasses: generalities and knowledge gaps. Plos One 7: 21–28.

    Google Scholar 

  • Walker D.I., and A.J. McComb. 1988. Seasonal variation in the production, biomass and nutrient status of Amphibolis antarctica (Labill.) Sonder & Aschers. and Posidonia australis Hook. F in Shark Bay, Western Australia. Aquatic Botany 31: 259–275.

Download references

Acknowledgments

Thanks to Di Walker for great hospitality hosting MH during her stay at the University of Western Australia (UWA) and in particular for assistance during the field campaign in Albany. Thanks also to Jeff Bastyan, Tom Davis, Renee Hovey, John Statton and staff at Plant Biology at UWA. MH was supported by a Gledden Visiting Research Fellowship from UWA and Danish Council for Natural Sciences (Travel stipend and 09-071369).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Holmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmer, M., Kendrick, G.A. High Sulfide Intrusion in Five Temperate Seagrasses Growing Under Contrasting Sediment Conditions. Estuaries and Coasts 36, 116–126 (2013). https://doi.org/10.1007/s12237-012-9550-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-012-9550-7

Keywords

Navigation