Skip to main content

Advertisement

Log in

Consequences of Climate Change on the Ecogeomorphology of Coastal Wetlands

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Climate impacts on coastal and estuarine systems take many forms and are dependent on the local conditions, including those set by humans. We use a biocomplexity framework to provide a perspective of the consequences of climate change for coastal wetland ecogeomorphology. We concentrate on three dimensions of climate change affects on ecogeomorphology: sea level rise, changes in storm frequency and intensity, and changes in freshwater, sediment, and nutrient inputs. While sea level rise, storms, sedimentation, and changing freshwater input can directly impact coastal and estuarine wetlands, biological processes can modify these physical impacts. Geomorphological changes to coastal and estuarine ecosystems can induce complex outcomes for the biota that are not themselves intuitively obvious because they are mediated by networks of biological interactions. Human impacts on wetlands occur at all scales. At the global scale, humans are altering climate at rapid rates compared to the historical and recent geological record. Climate change can disrupt ecological systems if it occurs at characteristic time scales shorter than ecological system response and causes alterations in ecological function that foster changes in structure or alter functional interactions. Many coastal wetlands can adjust to predicted climate change, but human impacts, in combination with climate change, will significantly affect coastal wetland ecosystems. Management for climate change must strike a balance between that which allows pulsing of materials and energy to the ecosystems and promotes ecosystem goods and services, while protecting human structures and activities. Science-based management depends on a multi-scale understanding of these biocomplex wetland systems. Causation is often associated with multiple factors, considerable variability, feedbacks, and interferences. The impacts of climate change can be detected through monitoring and assessment of historical or geological records. Attribution can be inferred through these in conjunction with experimentation and modeling. A significant challenge to allow wise management of coastal wetlands is to develop observing systems that act at appropriate scales to detect global climate change and its effects in the context of the various local and smaller scale effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen, J.R.L., and M.J. Duffy. 1998. Medium-term sedimentation on high intertidal mudflats and salt marshes in the Severn Estuary, SW Britain: the role of wind and tide. Marine Geology 150: 1–27.

    Google Scholar 

  • Allen, T.F.H., and T.W. Hoekstra. 1992. Toeward a Unified Ecology. New York, NY: Columbia University Press.

    Google Scholar 

  • Arp, W.J., B.G. Drake, W.T. Pockman, P.S. Curtis, and D.F. Whigham. 1993. Interactions between C3 and C4 salt marsh plant species during four years of exposure to elevated atmospheric CO2. Plant Ecology 104–105: 133–143.

    Google Scholar 

  • Baldwin, A., M. Egnotovich, M. Ford, and W. Platt. 2001. Regeneration in fringe mangrove forests damaged by Hurricane Andrew. Plant Ecology 157: 151–164.

    Google Scholar 

  • Baumann, R., J. Day, and C. Miller. 1984. Mississippi deltaic wetland survival: sedimentation vs coastal submergence. Science 224: 1093–1095.

    Google Scholar 

  • Bertness, M.D., and S.C. Pennings. 2000. Spatial variation in process and pattern in salt marsh plant communities in eastern North America. In Concepts and Controversies in Tidal Marsh Ecology, eds. M.P. Weinstein, and D.A. Kreeger, 39–58. The Netherlands: Kluwer Press.

    Google Scholar 

  • Blum, L.K., and K. Ed. 1995. Papers from William E. Odum Memorial Symposium. Estuaries 18: 545–659.

    Google Scholar 

  • Blum, L.K., and R.R. Christian. 2004. Belowground production and decomposition along a tidal gradient in a Virginia salt marsh. In The Ecogeomorphology of Tidal Marshes, eds. S. Fagherazzi, M. Marani, and L.K. Blum, 47–74. Washington, DC: American Geophysical Union.

    Google Scholar 

  • Boesch, D.F., M.N. Josselyn, A.J. Mehta, J.T. Morris, W.K. Nuttle, C.A. Simenstach, and D.J.P. Swift. 1994. Scientific assessment of coastal wetland loss, restoration and management in Louisiana. Journal of Coastal Research: Special Issue 20: 1–103.

    Google Scholar 

  • Boesch, D., L. Shabman, L. Antle, J. Day, R. Dean, G. Galloway, C. Groat, S. Laska, R. Luettich, W. Mitsch, N. Rabalais, D. Reed, C. Simenstad, B. Streever, R. Taylor, R. Twilley, C. Watson, J. Wells, and D. Whigham. 2006. A New Framework for Planning the Future of Coastal Louisiana after the Hurricanes of 2005. University of Maryland Center for Environmental Science. www.umces.edu. 48 p.

  • Bondesan, M., G. Castiglioni, C. Elmi, G. Gabbianelli, R. Marocco, P. Pirazzoli, and A. Tomasin. 1995. Coastal areas at risk from storm surges and sea-level rise in Northeastern Italy. Journal of Coastal Research 11: 1354–1379.

    Google Scholar 

  • Boumans, R.M., and J.W. Day Jr. 1994. Effects of two Louisiana marsh management plans on water and materials flux and short-term sedimentation. Wetlands 144: 247–261.

    Google Scholar 

  • Brinson, M.M., R.R. Christian, and L.K. Blum. 1995. Multiple states in the sea-level induced transition from terrestrial forest to estuary. Estuaries 18: 648–659.

    CAS  Google Scholar 

  • Browder, J., H. Bartley, and K. Davis. 1985. A probabilistic model of the relationship marshland-water interface and marsh disintegration. Ecological Modeling 29: 245–260.

    Google Scholar 

  • Browder, J., L. May, A. Rosenthal, J. Gosselink, and R. Baumann. 1989. Modeling future trends in wetland loss and brown shrimp production in Louisiana using thematic mapper imagery. Remote Sensing and Environment 28: 45–59.

    Google Scholar 

  • Cahoon, D. 1994. Recent accretion in two managed marsh impoundments in coastal Louisiana. Ecological Applications 4: 166–176.

    Google Scholar 

  • Cahoon, D., D. Reed, and J. Day. 1995a. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Marine Geology 128: 1–9.

    Google Scholar 

  • Cahoon, D., D. Reed, J. Day, G. Steyer, R. Boumans, J. Lynch, D. McNally, and N. Latif. 1995b. The influence of hurricane Andrew on sediment distribution in Louisiana coastal marshes. Journal of Coastal Research Special Issue 18: 280–294.

    Google Scholar 

  • Cahoon, D.R., and J.C. Lynch. 1997. Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida. USA. Mangrove and Salt Marshes 1: 173–186.

    Google Scholar 

  • Chapman, V.J. 1976. Mangrove vegetation. J. Cramer, Germany.

  • Chen, R., and R.R. Twilley. 1998. A gap dynamic model of mangrove forest development along gradients of soil salinity and nutrient resources. Journal of Ecology 86: 37–52.

    Google Scholar 

  • Chesney, E., D. Baltz, and G. Thomas. 2000. Louisiana estuarine and coastal fisheries and habitats: Perspectives from a fish’s eye view. Ecological Applications 10: 350–366.

    Google Scholar 

  • Christensen, T., P.L. Wiberg, and T.G. Milligan. 2000. Flow and sediment transport on a tidal salt marsh surface. Estuarine Coastal and Shelf Science 50: 315–331.

    Google Scholar 

  • Christian, R.R. 2003. Coastal initiative of the Global Terrestrial Observing System. Ocean & Coastal Management 46: 313–321.

    Google Scholar 

  • Christian, R.R., L. Stasavich, C. Thomas, and M.M. Brinson. 2000. Reference is a moving target in sea-level controlled wetlands. In Concepts and Controversies in Tidal Marsh Ecology, eds. M.P. Weinstein, and D.A. Kreeger, 805–825. The Netherlands: Kluwer Press.

    Google Scholar 

  • Christian, R.R., P.M. DiGiacomo, T.C. Malone, and L. Talaue-McManus. 2006. Opportunities and challenges of establishing coastal observing systems. Estuaries and Coasts 29: 871–875.

    Google Scholar 

  • Clark, J.S. 1986. Coastal forest tree populations in a changing environment, southeastern Long Island, New York. Ecological Monographs 56: 259–277.

    Google Scholar 

  • Conner, W.H., J.W. Day Jr., R.H. Baumann, and J. Randall. 1989. Influence of hurricanes on coastal ecosystems along the northern Gulf coast. Wetlands Ecology and Management 11: 45–56.

    Google Scholar 

  • Conner, W.H., and J.W. Day Jr. 1988. Rising water levels in coastal Louisiana: importance to forested wetlands. Journal of Coastal Research 4: 589–596.

    Google Scholar 

  • Conner, W.H., and J.W. Day Jr. 1991. Variations in vertical accretion in a Louisiana swamp. Journal of Coastal Research 7: 617–622.

    Google Scholar 

  • Day, J., and P. Templet. 1989. Consequences of sea level rise: implications from the Mississippi Delta. Coastal Management 17: 241–257.

    Google Scholar 

  • Day, J.W. Jr., D. Pont, P.F. Hensel, and C. Ibañez. 1995. Ipacts of sea-level rise on deltas in the Gulf of Mexico and the Mediterranean: the importance of pulsing events to sustainability. Estuaries 18: 636–647.

    CAS  Google Scholar 

  • Day, J., J. Martin, L. Cardoch, and P. Templet. 1997. System functioning as a basis for sustainable management of deltaic ecosystems. Coastal Management 25: 115–154.

    Google Scholar 

  • Day, J., J. Rybczyk, F. Scarton, A. Rismondo, D. Are, and G. Cecconi. 1999. Soil accretionary dynamics, sea-level rise and the survival of wetlands in Venice Lagoon: a field and modeling approach. Estuarine, Coastal and Shelf Science 49: 607–628.

    Google Scholar 

  • Day, J., G. Shaffer, L. Britsch, D. Reed, S. Hawes, and D. Cahoon. 2000a. Pattern and process of land loss in the Mississippi delta: a spatial and temporal analysis of wetland habitat change. Estuaries 23: 425–438.

    Google Scholar 

  • Day, J., N. Psuty, and B. Perez. 2000b. The role of pulsing events in the functioning of coastal barriers and wetlands: Implications for human impact, management and the response to sea level rise. In Concepts and Controversies in Salt Marsh Ecology, eds. M. Weinstein, and D. Dreeger, 633–660. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Day, J.W., A. Yáñez-Arancibia, W.J. Mitsch, A.L. Lara-Dominguez, J.N. Day, J.Y. Ko, R. lane, J. Lindsey, and D. Zárate-Lomelí. 2003. Using ecotechnology to address water quality and wetland habitat loss problems in the Mississippi basin: a hierarchical approach. Biotechnology Advances 22: 135–159.

    Google Scholar 

  • Day, J., John Barras, Ellis Clairain, James Johnston, Dubravko Justix, Paul Kemp, Jae-Young Ko, Robert Lane, William Mitsch, Gregory Steyer, Paul Templet, and Alejandro Yanez. 2005. Implications of global climatic change and energy cost and availability for the restoration of the Mississippi Delta. Ecological Engineering 24: 253–265.

    Google Scholar 

  • Day, J., E. Maltby, and C. Ibañez. 2006. River basin management and delta sustainability: a commentary on the Ebro delta and the Spanish national hydrological plan. Ecological Engineering 26: 85–99.

    Google Scholar 

  • Day, J., D. Boesch, E. Clairain, P. Kemp, S. Laska, W. Mitsch, K. Orth, H. Mashriqui, D. Reed, L. Shabman, C. Simenstad, B. Streever, R. Twilley, C. Watson, J. Wells, and D. Whigham. 2007. Restoration of the Mississippi delta: lessons from Hurricanes Katrina and Rita. Science 3155819: 1679–1684.

    CAS  Google Scholar 

  • Day, J., A.Yáñez-Arancibia, R. R. Twilley, and J. Cowan. 2008. Global climate change impacts on coastal ecosystems: Considerations for integrated coastal management. Chap. 14. In: Day, J. and A. Yáñez-Arancibia (eds.). The Gulf of Mexico: Ecosystem Based Management. Vol. 5. The Gulf of Mexico, Its Origin, Waters, Biota & Human Impacts. (Series). Harte Research Institute for Gulf of Mexico Studies, Texas A & M University-Corpus Christi, Texas A&M University Press. (in press).

  • Davis, S.E., J.E. Cable, D.L. Childers, C. Coronado-Molina, J.W. Day, C.D. Hittle, C.J. Madden, E. Reyes, D. Rudnick, and F. Sklar. 2004. Importance of Episodic Storm Events in Controlling Ecosystem Structure and Function in a Gulf Coast Estuary. Journal of Coastal Research 20: 1198–1208.

    Google Scholar 

  • Deegan, L.A., J.E. Hughes, and R.A. Rountree. 2000. Salt marsh ecosystem support of marine transient species. In Concepts and Controversies in Tidal Marsh Ecology, eds. M.P. Weinstein, and D.A. Kreeger, 333–368. The Netherlands: Kluwer Press.

    Google Scholar 

  • DeLaune, R.D., C.J. Smith, and W.H. Patrick Jr. 1983. Relationship of marsh elevation, redox potential, and sulfide to Spartina alterniflora productivity. Soil Science Society of America Journal 47: 930–935.

    CAS  Google Scholar 

  • DeLaune, R.D., and S. Pezeshki. 2003. The role of soil organic carbon in maintaining surface elevation in rapidly subsiding U.S. Gulf of Mexico coastal marshes. Water, Air, Soil Pollution 3: 167–179.

    CAS  Google Scholar 

  • DeLaune, R.D., A. Jugsujinda, G. Peterson, and W. Patrick. 2003. Impact of Mississippi River freshwater reintroduction on enhancing marsh accretionary processes in a Louisiana estuary. Estuarine Coastal Shelf Science 58: 653–662.

    CAS  Google Scholar 

  • DeLaune, R.D., S. Pezeshki, and A. Jugsujinda. 2005. Impact of Mississippi River freshwater reintroduction on Spartina patens marshes: responses to nutrient input and lowering of salinity. Wetlands 25: 155–161.

    Google Scholar 

  • Douglas, B.C. 2001. “An introduction to sea level.” In Sea Level Rise: History and Consequences, eds. B.C. Douglas, M.S. Kearney, and S.P. Leatherman, 232. London: Academic Press.

    Google Scholar 

  • Ellis, J., P. Nicholls, R. Craggs, D. Hofstra, and J. Hewitt. 2004. Effects of terrigenous sedimentation on mangrove physiology and associated macrobenthic communities. Marine Ecology Progress Series 270: 71–82.

    Google Scholar 

  • Emanuel, K. 2005. Increasing destructiveness of tropical cyclones over the last 30 years. Nature 436: 686.

    CAS  Google Scholar 

  • Ewel, K.C., R.R. Twilley, and J.E. Ong. 1998. Different kinds of mangrove forests provide different goods and services. Global Ecology and Biogeography Letters 7: 83–94.

    Google Scholar 

  • Fagherazzi, S., M. Marani, and L.K. Blum. 2004. Introduction: the coupled evolution of geomorphological and ecosystem structures in salt marshes. In The Ecogeomorphology of Tidal Marshes, eds. S. Fagherazzi, M. Marani, and L.K. Blum, 1–4. Washington, DC: American Geophysical Union.

    Google Scholar 

  • FAO, 2005. Coastal GTOS draft strategic design and phase 1 implementation plan. By Christian, R. R., D. Baird, R. E., Bowen, D. M. Clark, P. M. DiGiacomo, P. M., S. de Mora, J. Jiménez, J. Kineman, S. Mazzilli, G. Servin, L. Talaue-McManus, P. Viaroli & H. Yap. GTOS Report No. 36. FAO, Rome.

  • Flores, F., J. Day, and R. Breseño. 1987. Structure, litter fall, decomposition, and detritus dynamics of mangroves in a Mexican coastal lagoon with an ephemeral inlet. Marine Ecology Progress Series 35: 83–90.

    Google Scholar 

  • French, J.R. 1993. Numerical-simulation of vertical marsh growth and adjustment to accelerated sea-level rise, North Norfolk, UK. Earth Surface Processes and Landforms 18: 63–81.

    Google Scholar 

  • French, J.R., and T. Spencer. 1993. Dynamics of sedimentation in a tide-dominated backbarrier salt-marsh, Norfolk, UK. Marine Geology 110: 315–331.

    Google Scholar 

  • French, J.R., and D.R. Stoddart. 1992. Hydrodynamics of salt-marsh creek systems—implications for marsh morphological development and material exchange. Earth Surface Processes and Landforms 17: 235–252.

    Google Scholar 

  • Hackney, C.T., and W.J. Cleary. 1987. Saltmarsh loss in southeastern North Carolina lagoons: importance of sea level rise and inlet dredging. Journal of Coastal Research 3: 93–97.

    Google Scholar 

  • Hammar-Klose, E.S., and E.R. Thieler. 2001. Coastal vulnerability to sea-level rise: a preliminary database for the U. S. Atlantic, Pacific and Gulf of Mexico coasts. U. S. Geological Survey Digital Database-68 (http://pubs.usgs.gov/dds/dds68/).

  • Hatton, R.S., R.D. DeLaune, and W.H. Patrick Jr. 1983. Sedimentation, accretion, and subsidence in marshes of Barataria basin, Louisiana. Limnology and Oceanography 28: 494–502.

    Google Scholar 

  • Hayden, B.P., C.F.V. Santos, G. Shao, and R.C. Kochel. 1995. Geomorphological controls on coastal vegetation at the Virginia Coast Reserve. Geomorphology 13: 283–300.

    Google Scholar 

  • Hedgpeth, J.W. 1957. Classification of marine environments. Geological Society of America Memoir 67 1: 17–28.

    Google Scholar 

  • Henderson-Sellers, A., H. Zhang, G. Berz, K. Emanuel, W. Gray, C. Landsea, G. Holland, J. Lighthill, S. Shieh, P. Webster, and K. McGuffie. 1998. Tropical cyclones and global climate change: a post-IPCC assessment. Bulletin of the American Meteorology Society 79: 19–38.

    Google Scholar 

  • Hensel, P., J.W. Day Jr., D. Pont, and J.N. Day. 1998. Short term sedimentation dynamics in the Rhone River delta, France: the importance of riverine pulsing. Estuaries 21: 52–65.

    Google Scholar 

  • Hensel, P., J. Day, and D. Pont. 1999. Wetland vertical accretion and soil elevation change in the Rhone delta, France: the importance of riverine flooding. Journal of Coastal Research 15: 668–681.

    Google Scholar 

  • Hoyos, C., P. Agudelo, P. Webster, and J. Curry. 2006. Deconvolution of the factors contributing to the increase in global hurricane intensity. Science 312: 94–97.

    CAS  Google Scholar 

  • Ibáñez, C., N. Prat, and A. Canicio. 1996. Changes in the hydrology and sediment transport produced by large dams on the lower Ebro river and its estuary. Regulated Rivers 12: 51–62.

    Google Scholar 

  • Ibañez, C., A. Canicio, J.W. Day, and A. Curco. 1997. Morphologic evolution, relative sea level rise and sustainable management of water and sediment in the Ebre Delta. Journal of Coastal Conservation 3: 191–202.

    Google Scholar 

  • Ibañez, C., J. Day, and D. Pont. 1999. Primary production and decomposition of wetlands of the Rhone Delta, France: Interactive impacts of human modifications and relative sea level rise. Journal of Coastal Research 15: 717–731.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). 2007. Climate Change 2007: The Sciene Basis. Contribution of Working Group 1 to the Fourth Assessment Report, Cambridge University Press, Cambridge, UK.

  • Intergovernmental Oceanographic Commission. 2003. The integrated strategic design plan for the coastal observations module of the Global Oceanographic Observing System. IOC/INF-1183. GOOS Report No. 125. 190 p.

  • International Commission on Continental Erosion of the IAHS. 2003. Review of commission activities, status report June 2003. http://www.cig.ensmp.fr/~iahs/sapporo/sapporo-ICCE/Sapporo-ICCE-report.pdf

  • Junk, W.J., P.B. Bayley, and R.E. Sparks. 1989. The flood pulse concept in river-floodplain systems. In D. P. Dodge, ed. Proceedings of the International Large River Symposium. Special Issue of Journal of Canadian Fisheries and Aquatic Sciences 106: 11–127.

    Google Scholar 

  • Junk, W.J. 1999. The flood pulse concept of large rivers: learning from the tropics. Archiv fur Hydrobiologie Supplement 115: 261–280.

    Google Scholar 

  • Kana, T.W., B.J. Baca, and M.L. Williams. 1986. Potential impacts of sea level rise on wetlands around Charleston, South Carolina. U. S. Environmental Protection Agency, EPA 230-10-85-014. 65 pp.

  • Kennedy, V.S., R.R. Twilley, J. Kleypas, J.H. Cowan, Jr., and S.R. Hare. 2002. Coastal and marine ecosystems and global climate change. Potential effects on U.S. resources. Pew Center on Global Climate Change, Arlington, VA, August 2002. 52pp.

  • Kesel, R.H. 1989. The role of the Mississippi River in wetland loss in Southeastern Louisiana, USA. Environmental Geology and Water Sciences 133: 183–193.

    Google Scholar 

  • Kneib, R.T. 2000. Salt marsh ecoscapes and production transfers by estuarine nekton in the southeastern United States. In Concepts and Controversies in Tidal Marsh Ecology, eds. M.P. Weinstein, and D.A. Kreeger, 267–292. The Netherlands: Kluwer Press.

    Google Scholar 

  • Ko, J.Y., and J.W. Day. 2004. A review of ecological impacts of oil and gas development on coastal ecosystems in the Mississippi Delta. Ocean & Coastal Management 4711–12: 597–624.

    Google Scholar 

  • Lynch, J.C., J.H. Merriwether, B.A. McKee, F. Vera-Herrera, and R.R. Twilley. 1989. Recent accretion in mangrove ecosystems based on 137Cs and 210Pb methods. Estuaries 12: 284–299.

    CAS  Google Scholar 

  • Longhurst, A., and D. Pauly. 1987. Ecology of Tropical Oceans. 407. San Diego, California: Academic Press Inc..

    Google Scholar 

  • Macnae, W. 1968. A general account of the fauna and flora of mangrove swamps and forests in the Indo-West Pacific region. Advances in Marine Biology 6: 73–270.

    Google Scholar 

  • McCaffrey, R., and J. Thompson. 1980. A record of the accumulation of sediment and trace metals in a Connecticut salt marsh. In Estuarine Physics and Chemistry: Studies in Long Island Sound, ed. B. Saltzmann, 165–236. New York: Academic Press.

    Google Scholar 

  • Mendelssohn, I.A., and J.T. Morris. 2000. Eco-physiologiacal control on the productivity of Spartina alteriflora loisel. In Concepts and Controversies inTidal Marsh Ecology, eds. M.P. Weinstein, and D.A. Kreeger, 59–80. Dortrecht, The Netherlands: Kuwer Academic Publishers.

    Google Scholar 

  • Michner, W.K., T.J. Baerwald, P. Firth, M.A. Palmer, J.L. Rosenberger, E.A. Sandlin, and H. Herman. 2001. Defining and unraveling biocomplexity. BioScience 51: 1018–1023.

    Google Scholar 

  • Miller, L., and B. Douglas. 2004. Mass and volume contributions to twentieth-century global sea level rise. Nature 428: 406–409.

    CAS  Google Scholar 

  • Milliman, J.D., G.S. Quraishee, and M.A. Beg. 1984. Sediment discharge from the Indus River to the ocean; Past, present and future. In Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan, eds. B.H. Haq, and J.D. Milliman, 265–270. New York, New York, USA: Van Nostrand Reinhold Co.

    Google Scholar 

  • Milliman, J.D., J.M. Broadus, and F. Gable. 1989. Environmental and economic implications of rising sea level and subsiding deltas: the Nile and Bengal examples. Ambio 186: 340–345.

    Google Scholar 

  • Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83: 2869–2877.

    Google Scholar 

  • Morton, R.A., N. Buster, and M.D. Krohn. 2002. Subsurface controls on historical subsidence rates and associated wetland loss in southcentral Louisiana. Gulf Coast Association of Geological Societies 52: 767–778.

    Google Scholar 

  • Najjar, R.G., and 15 others. 2000. The potential impacts of climate change on the mid-Atlantic coastal region. Climate Research 14: 219–233.

    Google Scholar 

  • Ocean.US 2003. Implementation of the Initial U.S. Integrated Ocean Observing System, Part 1 Structure and Governance. Ocean.US. Arlington, VA

  • Odum, E.P. 1980. The status of three ecosystem-level hypotheses regarding salt marsh estuaries: tidal subsidy, outwelling, and detrital-based food chains. In Estuarine Perspectives, ed. V. Kennedy, 485–495. N.Y.: Academic Press.

    Google Scholar 

  • Odum, W.E., C.C. McIvor, and T.J. Smith, III. 1982. The ecology of mangroves of south Florida: A community profile. Fish and Wildlife Service/Office of Biological Services, Washington, D.C. FWS/OBS-81/24.

  • Odum, W.E., E.P. Odum, and H.T. Odum. 1995. Nature’s pulsing paradigm. Estuaries 18: 547–555.

    Google Scholar 

  • Ortiz-Pérez, M.A., A.P. Méndez-linarez, and J.R. Hernández-Santana. 2008. Sea-level rise and vulnerability of coastal low-land in the Mexican area of the Gulf of Mexico and the Caribbean Sea. In: J. W. Day and A. Yáñez-Arancibia (eds.), The Gulf of Mexico: Ecosystem-Based Management, Texas A&M University Press, (in press).

  • Orson, R., R. Warren, and W. Niering. 1987. Development of a tidal marsh in a New England River Valley. Estuaries 10: 20–27.

    Google Scholar 

  • Parkinson, R.W., R.D. DeLaune, and J.R. White. 1994. Holocene sea-level rise and the fate of mangrove forests within the wider Caribbean region. Journal of Coastal Research 10: 1077–1086.

    Google Scholar 

  • Pauly, D., and J. Ingles. 1986. The relationship between shrimp yields and intertidal vegetation (mangroves) areas: a reassessment. In: A. Yáñez-Arancibia and D. Pauly (eds.), IOC/FAO Workshop on Recruitment in Tropical Coastal Demersal Communities. UNESCO IOC Workshop Report Supplement 44:277–283.

  • Pearcy, W., and S. Myers. 1974. Larval fishes of Yaquina Bay, Oregon: a nursery ground for marine fishes? U.S. Fishery Bulletin 72: 201–213.

    Google Scholar 

  • Pennings, S.C., and B.R. Silliman. 2005. Linking biogeography and community ecology: latitudinal variation in plant-herbivore interaction strength. Ecology 86: 2310–2319.

    Google Scholar 

  • Pirazzoli, P. 1987. Recent sea-level changes and related engineering problems in the Lagoon of Venice, Italy. Progress in Oceanography 18: 323–346.

    Google Scholar 

  • Poff, LeRoy, M. Brinson, and J. Day. 2002. Aquatic ecosystems & global climate change: Potential impacts on inland freshwater and coastal wetland ecosystems in the United States. Pew Center on Global Climate Change. Arlington, VA. 45 pp.

  • Pont, D., J. Day, P. Hensel, E. Franquet, F. Torre, P. Rioual, C. Ibañez, and E. Coulet. 2002. Response scenarios for the deltaic plain of the Rhône in the face of an acceleration in the rate of sea level rise, with a special attention for Salicornia-type environments. Estuaries 25: 337–358.

    Google Scholar 

  • Rahmstorf, S. 2007. A semi-empirical approach to projecting sea level rise. Science 315: 368–370.

    CAS  Google Scholar 

  • Raper, S. 1993. Observational Data on the Relationship between Climatic Change and the Frequency and Magnitude of Severe Storms. In Climate and Sea Level Change: Observations, Projections, and Implications, eds. R. Warrick, E. Barrow, and T. Wigley, 192–212. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ray, G., and M.G. McCormick. 1992. Functional coastal–marine biodiversity. Trans. 57th N. A. Wild. & Nat. Res. Conf 384–397.

  • Redfield, A.C. 1972. Development of a New England salt marsh. Ecological Monographs 42: 201–237.

    Google Scholar 

  • Reed, D.J. 1992. Effect of weirs on sediment deposition in Louisiana coastal marshes. Environmental Management 16: 55–65.

    Google Scholar 

  • Riggs, S.R., and D. Ames. 2003. Drowning the North Carolina Coast: Sea-level Rise and Estuarine Dynamics. North Carolina Sea Grant College Program. Raleigh, NC UNC-SG-03–04.

  • Rogers, D., B. Rogers, and W. Herke. 1992. Effects of a marsh management plan on fishery communities in Louisiana. Wetlands 12: 53–62.

    Article  Google Scholar 

  • Rybczyk, J., X.W. Zhang, J. Day, I. Hesse, and S. Feagley. 1995. The impact of Hurricane Andrew on tree mortality, litterfall and water quality in a Louisiana coastal swamp forest. Journal of Coastal Research, Special Issue 21: 340–353.

    Google Scholar 

  • Salinas, L.M., R.D. DeLaune, and W.H. Patrick Jr. 1986. Changes occurring along a rapidly subsiding coastal area: Louisiana, USA. Journal of Coastal Research 2: 269–284.

    Google Scholar 

  • Santer, B.D., T.M.L. Wigley, T.P. Barnett, and E. Anyamba (editors). 1996. Detection of climate change and attribution of causes. P. 407–443. In J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell (editors). Climate Change 1995: The Science of Climate Change. Cambridge University Press, Cambridge, Great Britain.

  • Scavia, D., J.C. Field, D.F. Boesch, R.W. Buddemeier, V. Burkett, D.R. Cayan, M. Fogarty, M.A. Harwell, R.W. Howarth, C. Mason, D.J. Reed, R.C. Royer, A.H. Sallenger, and J.G. Titus. 2002. Climate change impacts on U.S. coastal and marine ecosystems. Estuaries 25: 149–164.

    Article  Google Scholar 

  • Schubel, J.R., and D.J. Hirschberg. (1978). Estuarine Graveyards, Climatic Change, and the Importance of the Estuarine Environment. Estuarine Interactions 285–303.

  • Sestini, G. 1992. Implications of climatic changes for the Po delta and Venice lagoon. In L. Jeftic, J. Milliman and G. Sestini (eds.). Climatic Change and the Mediterranean. Edward Arnold, London.

  • Sestini, G. 1996. Land subsidence and sea-level rise: The case of the Po delta region, Italy. In Sea-Level Rise and Coastal Subsidence, eds. J. Milliman, and B. Haq, 235–248. Dordrecth, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Sherman, R.E., T.J. Fahey, and J.J. Battles. 2000. Small-scale disturbance and regeneration dynamics in a neotropical mangrove forest. Journal of Ecology 88: 165–178.

    Google Scholar 

  • Silliman, B.R., and M.D. Bertness. 2002. A trophic cascade regulates salt marsh primary production. Proceedings of the national Academy of Sciences 99: 10500–10505.

    CAS  Google Scholar 

  • Silliman, B.R., J. van de Koppel, M.D. Bertness, L.E. Stanton, and I.A. Mendelssohn. 2005. Drought, snails, and large-scale die-off of southern US salt marshes. Science 310: 1803–1806.

    CAS  Google Scholar 

  • Smith, T.J. III. 1987. Seed predation in relation to tree dominance and distribution in mangrove forests. Ecology 68: 266–273.

    Google Scholar 

  • Smith, T.J. 1992. Forest structure. In Tropical Mangrove Ecosystems, eds. A.I. Robertson, and D.M. Alongi, 101–136.Washington, DC: American Geophysical Union.

    Google Scholar 

  • Smith, T.J., M.B. Robblee, H.R. Wanless, and T.W. Doyle. 1994. Mangroves, hurricanes and lightning strikes. BioScience 44: 256–262.

    Google Scholar 

  • Snedaker, S. 1984. Mangroves: A summary of knowledge with emphasis on Pakistan. In Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan, eds. B.H. Haq, and J.D. Milliman, 255–262. New York: Van Nostrand Reinhold Co.

    Google Scholar 

  • Stanley, D.J. 1988. Subsidence in the northeastern Nile delta: rapid rates, possible causes, and consequences. Science 240: 497–500.

    Google Scholar 

  • Stanley, D.J., and A. Warne. 1993. Nile delta: recent geological evolution and human impacts. Science 260: 628–634.

    Google Scholar 

  • Stevenson, J.C., M.S. Kearney, and E.C. Pendleton. 1985. Sedimentation and erosion in a Chesapeake bay brackish marsh system. Marine Geology 67: 13–235.

    Google Scholar 

  • Stone, G.W., and C.W. Finkl. 1995. Journal of Coastal Research. The Coastal Education and research Foundation. 1–354.

  • Sutton, R.T., and D.L.R. Hodson. 2005. Atlantic Ocean forcing and North American and European summer climate. Science 309: 115–118.

    CAS  Google Scholar 

  • Swenson, E., and R. Turner. 1987. Spoil banks: effects on a coastal marsh water level regime. Estuarine, Coastal, and Shelf Science 24: 599–609.

    Google Scholar 

  • Syvitski, J.P.M., C.J. Vörömarty, A.J. Kettner, and P. Green. 2005. Impacts of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308: 376–380.

    CAS  Google Scholar 

  • Tarasona, J., W. E. Arntz and E. C. Maruenda (eds.) 2001. El Niño en América Latina: Impactos Biológicos y Sociales. El Niño in Latin America: Biologic and Social Impacts. Consejo Nacional de Ciencia y Tecnología, Lima, Perú. 423 pp.

  • Thom, B.G. 1984. Coastal landforms and geomorphic processes. In The Mangrove Ecosystem Research Methods, eds. S.C. Snedaker, and J.G. Snedaker, 3–17. Paris, France: UNESCO.

    Google Scholar 

  • Tockner, K., F. Malard, and J.V. Ward. 2000. An extension of the flood pulse concept. Hydrologic Processes 14: 2861–2883.

    Google Scholar 

  • Tomlinson, P.B. 1986. The Botany of Mangroves. Australia: Cambridge University Press.

    Google Scholar 

  • Turner, R.E. 1977. Intertidal vegetation and commercial yields of penaeid shrimp. Transactions of the American Fisheries Society 106: 411–416.

    Google Scholar 

  • Twilley, R.R. 1988. Coupling of mangroves to the productivity of estuarine and coastal waters. In Coastal-Offshore Ecosystem Interactions, ed. B.O. Jansson, 155–180. Germany: Springer-Verlag.

    Google Scholar 

  • Twilley, R.R. 1995. Properties of mangrove ecosystems related to the energy signature of coastal environments. In Maximum Power, ed. C. Hall, 43–62. Boulder, Colorado: University of Colorado Press.

  • Twilley, R.R., and J.W. Day. 1999. The productivity and nutrient cycling of mangrove ecosystem, Chapter 10: 127–152. In: A. Yáñez-Arancibia and A. L. Lara-Dominguez (eds.), Mangrove Ecosystesm in Tropical America, INECOL A. C. Mexico, IUCN-ORMA Costa Rica, NMFS-NOAA, Silver Spring MD, 380 pp.

  • Twilley, R.R., S.C. Snedaker, A. Yáñez-Arancibia, and E. Medina.1996. Biodiversity and ecosystem processes in tropical estuaries: perspectives on mangroves ecosystems. In: H. A. Mooney, S. H. Cushan, E. Medina, O.E. Sala, E.D. Schultze (eds), Functional Roles of Biodiversity: A Global Perspective. John Wiley & Sons Ltd. Chapt. 13: 327–370.

  • Twilley, R.R., E.J. Barron, H.L. Gholz, M.A. Harwell, R.L. Miller, D.J. Reed, J.B. Rose, E.H. Siemann, R.G. Wetzel, and R.J. Zimmerman. 2001. Confronting Climate Change in the Gulf Coast Region: Prospects for Sustaining Our Ecological Heritage. Union of Concerned Scientist, Cambridge, Massachusetts, and Ecological Society of America, Washington D.C., 82 pp.

  • Twilley, R.R., V.H. Rivera-Monroy, R. Chen, and L. Botero. 1999. Adapting an ecological mangrove model to simulate trajectories in restoration ecology. Marine Pollution Bulletin 37: 404–419.

    Google Scholar 

  • UNEP 1994. Assessment and Monitoring of Climatic Change Impacts on Mangroves Ecosystems. United Nations Environment Programme, Seas Report and Studies No. 154, 62 pp.

  • Varela, J.M., Gallardo, A. et al. 1986. “Retención de sólidos por los embalses de Mequinenza y Ribarroja. Efectos sobre los aportes al Delta del Ebro”. In: El Sistema Integrado del Ebro, M. Mariño Ed., Gráficas Hermes, Madrid.

  • Walsh, K. 2004. Tropical cyclones and climate change: unresolved issues. Climate Research 27: 77–83.

    Google Scholar 

  • Webster, J., G.J. Holland, J.A. Curry, and H.-R. Chang. 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309: 1844.

    CAS  Google Scholar 

  • Wigley, T.M.L. 1999. The Science of Climate Change: Global and U. S. Perspectives. Pew Center on Coastal Climate Change, Arlington, VA.

  • Wilkinson, C.R., and R.W. Buddemeier. 1994. Global Climate Change and Coral Reefs: Implications for People and Reefs. Report of the UNEP-IOC-ASPEI-IUCN Global task Team on the Implications of Climate Change on Coral Reefs. IUCN, Gland, Switzerland, 124 pp.

  • Woodroffe, C.D. 1990. The impact of sea-level rise on mangrove shorelines. Progress in Physical Geography 14: 483–520.

    Google Scholar 

  • Woodroffe, C. 1992. Mangrove sediments and geomorphology. In Tropical Mangrove Ecosystems, eds. A.I. Robertson, and D.M. Alongi, 7–42. Washington, D.C.: American Geophysical Union.

    Google Scholar 

  • Woodroffe, C.D. 1993. Sea level. Progress in Physical Geography 17: 359–368.

    Google Scholar 

  • Woodroffe, C.D. 1995. Response of tide-dominated mangrove shorelines in northern Australia to anticipated sea-level rise. Earth Surface Processes and Landforms 2: 65–85.

    Google Scholar 

  • Woodroffe, C.D. 2002. Coasts: form, process and evolution. Cambridge, UK: Cambridge University Press. 623 p.

  • Yáñez-Arancibia, A. 2005. Middle America, Coastal Ecology and Geomorphology, p 639–645. In: M. Schwartz (ed.), The Encyclopedia of Coastal Sciences, Springer Publ., Dordrecht, The Netherlands, 1300 pp.

  • Yáñez-Arancibia, A., and J.W. Day. 2004. Environmental sub-regions in the Gulf Mexico: the ecosystem approach as an environmental management tool. Ocean & Coastal Management 4711–12: 727–757.

    Google Scholar 

  • Yáñez-Arancibia, A., R.R. Twilley, and A.L. Lara-Dominguez. 1998. Mangrove ecosystems and the global climatic change. Madera y Bosques 42: 3–19.

    Google Scholar 

  • Yáñez-Arancibia, A., P. Sánchez-Gil, and A.L. Lara-Dominguez. 1999. Functional groups, seasonality and biodiversity in Terminos Lagoon a tropical estuary, México. Revta. Soc. Mex. Hist. Nat 49: 35–45.

    Google Scholar 

  • Zimmerman, R., T. Minello, E. Klima, and J. Nance. 1991. Effects of accelerated sea-level rise on coastal secondary production. In Coastal Wetlands, ed. H. Bolton, 110–124. New York: American Society of Civil Engineers.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation grant NSF-DEB-0124293 to the Estuarine Research Federation Initiative in Biocomplexity: Facilitation of Research on Estuarine Responses to Climate Change and Variability (Workshop Spring 2002). Further support for RRC came from the National Science Foundation grant DEB-0621014 for the Virginia Coast Reserve Long-Term Ecological Research. Alejandro Yáñez-Arancibia completed much of his contribution on a sabbatical as visiting professor at Louisiana State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Day.

Additional information

This paper results from an assessment undertaken by the Estuarine Research Federation on the Biocomplex Responses to Climate Change.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Day, J.W., Christian, R.R., Boesch, D.M. et al. Consequences of Climate Change on the Ecogeomorphology of Coastal Wetlands. Estuaries and Coasts 31, 477–491 (2008). https://doi.org/10.1007/s12237-008-9047-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-008-9047-6

Keywords

Navigation