Skip to main content
Log in

Variation in Susceptibility to Potato Psyllid, Bactericera cockerelli (Hemiptera: Triozidae), among Solanum verrucosum Germplasm Accessions

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), is a key pest of potato and the vector of “Candidatus Liberibacter solanacearum,” the pathogen associated with zebra chip disease. Development of potato cultivars with genetic resistance to potato psyllid would enable cost-effective control of this pest with reduced use of insecticides. To facilitate the development of resistant cultivars, the objective of our study was to screen germplasm accessions of Solanum verrucosum for resistance to potato psyllid. The susceptibility of S. verrucosum germplasm accessions to potato psyllid was highly variable in choice prescreening assays and no-choice performance assays. Compared with the susceptible potato cultivar, ‘Russet Burbank,’ several S. verrucosum populations exhibited strong resistance to potato psyllid. The S. verrucosum accession, PI 195170 was highly resistant to potato psyllid, and is a potential source of genetic resistance for the development of resistant potato cultivars.

Resumen

El psílido de la papa, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), es una plaga clave de la papa y el vector de “Candidatus Liberibacter solanacearum,” el patógeno asociado a la enfermedad de la papa rayada (zebra chip). El desarrollo de variedades de papa con resistencia genética al psílido, permitiría un control costo-efectivo de esta plaga con el uso reducido de insecticidas. Para facilitar el desarrollo de variedades resistentes, el objetivo de nuestro estudio fue probar introducciones de germoplasma de Solanum verrucosum para la resistencia al psílido. La susceptibilidad de las introducciones del germoplasma de S. verrucosum al psílido de la papa fue altamente variable en ensayos de la selección antes de la evaluación, y en el comportamiento de los ensayos de no selección. Al compararlas con la variedad susceptible de papa “Russet Burbank”, varias poblaciones de S. verrucosum exhibieron fuerte resistencia al psílido. La introducción PI 195170 de S, verrucosum fue altamente resistente al psílido y es una fuente potencial de resistencia genética para el desarrollo de variedades resistentes de papa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Butler, C.D., and J.T. Trumble. 2012. The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae): life history, relationship to plant disease, and management strategies. Terrestrial Arthropod Reviews 5: 87–111.

    Article  Google Scholar 

  • Butler, C.D., B. Gonzalez, K.L. Manjunath, R.F. Lee, R.G. Novy, J.C. Miller, and J.T. Trumble. 2011. Behavioral responses of adult potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae), to potato germplasm and transmission of Candidatus Liberibacter psyllaurous. Crop Protection 30: 1233–1238.

    Article  Google Scholar 

  • Cooper, W.R., and J.B. Bamberg. 2014. Variation in Bactericera cockerelli (Hemiptera: Triozidae) oviposition, survival, and development on Solanum bulbocastanum germplasm. American Journal of Potato Research 91: 532–537.

    Article  CAS  Google Scholar 

  • Crosslin, J.M., H. Lin, and J.E. Munyaneza. 2011. Detection of ‘Candidatus Liberibacter solanacearum’ in the potato psyllid, Bactericera cockerelli (Sulc), by conventional and real-time PCR. Southwestern Entomologist 36: 125–135.

    Article  Google Scholar 

  • Edwards, D., and J.J. Berry. 1987. The efficiency of simulation-based multiple comparisons. Biometrics 43: 913–928.

    Article  CAS  PubMed  Google Scholar 

  • Flanders, K.L., J.G. Hawkes, E.B. Radcliffe, and F.I. Lauer. 1992. Insect resistance in potatoes: sources evolutionary relationships, morphological and chemical defenses and ecogeographical associations. Euphytica 61: 83–111.

    Article  CAS  Google Scholar 

  • Gbur, E.E., W.W. Stroup, K.S. McCarter, S. Durham, L.J. Young, M. Christman, M. West, and M. Kramer. 2012. Analysis of generalized linear mixed models in agricultural and natural resources science. Madison: American Society of Agronomy.

    Google Scholar 

  • Hansen, A.K., J.T. Trumble, R. Stouthamer, and T.D. Paine. 2008. A new Huanglongbing species, “Candidatus Liberibacter psyllaurous,” found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). Applied and Environmental Microbiology 74: 5862–5865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermsen, J.G.T., and M.S. Ramanna. 1976. Barriers to hybridization of Solanum bulbocastanum Dun and S. verrucosum Schlechtd and structural hybridity in their F1 plants. Euphytica 25: 1–10.

    Article  Google Scholar 

  • Jansky, S.H. 2000. Breeding for disease resistance in potato. Plant Breeding Review 19: 69–155.

    Google Scholar 

  • Levy, J., and C. Tamborindeguy. 2014. Solanum haborchaites, a potential source of resistance against Bactericera cockerelli (Hemiptera: Triozidae) and “Candidatus Liberibacter solanacearum.”. Journal of Economic Entomology 107: 1187–1193.

    Article  PubMed  Google Scholar 

  • Liefting, L.W., Z.C. Perez-Egusquiza, G.R.G. Clover, and J.A.D. Anderson. 2008. A new ‘Candidatus Liberibacter’ species in Solanum tuberosum in New Zealand. Plant Disease 92: 1474.

    Article  Google Scholar 

  • Munyaneza, J.E. 2012. Zebra chip disease of potato: biology, epidemiology, and management. American Journal of Potato Research 89: 329–350.

    Article  Google Scholar 

  • Pelletier, Y., J. Pompon, P. Dexter, and D. Quiring. 2010. Biological performance of Myzus persicae and Macrosiphum euphorbiae (Homoptera: Aphididae) on seven wild Solanum species. Annals of Applied Biology 156: 329–336.

    Article  Google Scholar 

  • Pfeiffer, D.G., and E.C. Burts. 1983. Effect of tree fertilization on numbers and development of pear psylla (Homoptera: Psyllidae) and on fruit damage. Environmental Entomology 12: 898–901.

    Article  Google Scholar 

  • Plaisted, R.L., and R.W. Hoopes. 1989. The past record and future prospects for the use of exotic potato germplasm. American Potato Journal 66: 603–627.

    Article  Google Scholar 

  • SAS Institute. 2012. SAS release 9.3 ed. Cary, NC: SAS Institute.

  • Secor, G.A., V.V. Rivera-Vargas, J.A. Abad, I.M. Lee, G.R.G. Clover, L.W. Liefting, X. Li, and S.H. De Boer. 2009. Association of ‘Candidatus Liberibacter solanacearum’ with zebra chip disease of potato established by graft and psyllid transmission, electron microscopy, and PCR. Plant Disease 93: 574–583.

    Article  CAS  Google Scholar 

  • Spooner, D.M., and J.B. Bamberg. 1994. Potato genetic resources: sources of resistance and systematics. American Potato Journal 71: 325–337.

    Article  Google Scholar 

  • Spooner, D.M., M. Ghislain, R. Simon, S.H. Jansky, and T. Gavrilenko. 2014. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Botanical Review 80: 283–383.

    Article  Google Scholar 

  • Swisher, K.D., J.E. Munyaneza, and J.M. Crosslin. 2012. High resolution melting analysis of the cytochrome oxidase I gene identifies three haplotypes of the potato psyllid in the United States. Environmental Entomology 41: 1019–1028.

    Article  CAS  Google Scholar 

  • Tiwari, J.K., S. Devi, S. Sharma, P. Chandel, S. Rawat, and B.P. Singh. 2015. Allele mining in Solanum germplasm: cloning and characterization of RB-homologous gene fragments from late blight resistant wild potato species. Plant Molecular Biology Reporter 33: 1584–1598.

    Article  CAS  Google Scholar 

  • Walters, D.R. 2011. Plant defense: Warding off attack by pathogens, herbivores, and parasitic plants. Ames: Wiley-Blackwell Publishing.

    Google Scholar 

  • Yermishin, A.P., Y.V. Polyukhovich, E.V. Voronkova, and A.V. Savchuk. 2014. Production of hybrids between the 2EBN bridge species Solanum verrucosum and 1EBN diploid potato species. American Journal of Potato Research 91: 610–617.

    Article  Google Scholar 

Download references

Acknowledgments

Pauline Anderson and Heather Headrick provided technical assistance. Partial funding was provided by the USDA-ARS Germplasm Crop Committee. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the United States Department of Agriculture. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Rodney Cooper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cooper, W.R., Bamberg, J.B. Variation in Susceptibility to Potato Psyllid, Bactericera cockerelli (Hemiptera: Triozidae), among Solanum verrucosum Germplasm Accessions. Am. J. Potato Res. 93, 386–391 (2016). https://doi.org/10.1007/s12230-016-9512-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-016-9512-x

Keywords

Navigation