Skip to main content

Advertisement

Log in

Soil Phosphorus Increases Dry Matter and Nutrient Accumulation and Allocation in Potato Cultivars

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Understanding the influence of P in the pattern of production and partitioning of dry matter (DM) and nutrients to the tubers of potato cultivars is critical for development of rational fertilization strategies to optimize tuber yield. The objective of this study was to evaluate the effect of soil P availability (Low P: 10 mg dm−3 and High P: 111 mg dm−3) in the leaf nutrients concentration, nutrients and DM accumulation and allocation to tubers of five potato cultivars (Agata, Asterix, Atlantic, Markies, and Mondial). The experiment was conducted under greenhouse conditions in pots containing 35 L of a Typic Acrortox soil. High P availability in the soil increased P concentrations in all plant organs, uptake of P and Cu, and DM production of all potato cultivars. The cultivars showed differences in the harvest index (HI) and uptake and allocation of N, K, Ca, Mg, S, Fe, Mn, and Zn to the tubers in response to P supply. Even with higher whole plant DM production and HI under high P availability in the soil, some of the cultivars did not increase the uptake and proportion allocated to the tubers of some nutrients as a response to the high P supply. This highly controlled greenhouse experiment was able to reveal cultivar differences in DM, HI, and nutrient accumulation influenced by P, a first step toward future studies exploiting these differences in the field production environment.

Resumen

El entendimiento de la influencia del P en el patrón de producción y fragmentación de la materia seca (MS) y los nutrientes a los tubérculos de las variedades de papa, es crítico para el desarrollo de estrategias racionales de fertilización para optimizar el rendimiento de tubérculo. El objetivo de este estudio fue evaluar el efecto de la disponibilidad del P del suelo (bajo P: 10 mg dm−3 y alto P: 111 mg dm−3) en la concentración de los nutrientes en la hoja, acumulación de nutrientes y MS y la ubicación en los tubérculos de cinco variedades de papa (Agata, Asterix, Atlantic, Markies, y Mondial). El experimento se desarrolló bajo condiciones de invernadero en macetas de 35 L de suelo típico acrortocico. La disponibilidad alta de P en el suelo aumentó las concentraciones del elemento en todos los órganos de la planta, así como la absorción de P y Cu, y la producción de MS en todas las variedades. Éstas mostraron diferencias en el índice de cosecha (IC) y en la absorción y ubicación de N, K, Ca, Mg, S, Fe, Mn y Zn en el tubérculo en respuesta al suministro de P. Aun con producción más alta MS de toda la planta y de IC con alta disponibilidad de P en el suelo, algunas de las variedades no aumentaron la absorción y proporción destinada a los tubérculos de algunos nutrientes como respuesta al suministro alto de P. Este experimento de invernadero altamente controlado fue capaz de revelar diferencias entre variedades en MS, IC y acumulación de nutrientes influenciadas por P, un primer paso hacia estudios a futuro en la exploración de estas diferencias en el ambiente de producción en el campo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ABBA - Associação Brasileira da Batata. 2010. Varieties. Revista Batata Show 10: 1–4.

    Google Scholar 

  • Alvarez-Sánchez, E., J.D. Etchevers, J. Ortiz, R. Núñez, V. Volke, L. Tijerina, and A. Martínez. 1999. Biomass production and phosphorus accumulation of potato as affected by phosphorus nutrition. Journal of Plant Nutrition 22: 205–217.

    Article  Google Scholar 

  • Balemi, T. 2011. Screening for genotypic variation in potato for phosphorus efficiency. International Research Journal of Plant Science 2: 233–243.

    Google Scholar 

  • Barben, S.A., B.G. Hopkins, V.D. Jolley, B.L. Webb, and B.A. Nichols. 2010a. Phosphorus and manganese interactions and their relationships with zinc in chelator-buffered solution grown Russet Burbank potato. Journal of Plant Nutrition 33: 752–769.

    Article  CAS  Google Scholar 

  • Barben, S.A., B.G. Hopkins, V.D. Jolley, B.L. Webb, and B.A. Nichols. 2010b. Phosphorus and zinc interactions in chelator-buffered solution grown Russet Burbank potato. Journal of Plant Nutrition 33: 587–601.

    Article  CAS  Google Scholar 

  • Chiera, J., J. Thomas, and T. Rufty. 2002. Leaf initiation and development in soybean under phosphorus stress. Journal of Experimental Botany 53: 473–481.

    Article  CAS  PubMed  Google Scholar 

  • Dechassa, N., M.K. Schenk, N. Claassen, and B. Steingrobe. 2003. Phosphorus efficiency of cabbage (Brassica oleraceae L. var. capitata), carrot (Daucus carota L.), and potato (Solanum tuberosum L.). Plant and Soil 250: 215–224.

    Article  CAS  Google Scholar 

  • Ewing, E.E. 1997. Potato. In The physiology of vegetable crops, ed. H.C. Wien, 295–344. Wallingford: Cab International.

    Google Scholar 

  • Fageria, V.D. 2001. Nutrient interactions in crop plants. Journal of Plant Nutrition 24: 1269–1290.

    Article  CAS  Google Scholar 

  • Fernandes, A.M., and R.P. Soratto. 2012. Nutrition, dry matter accumulation and partitioning, and phosphorus use efficiency of potato plants grown under phosphorus rates in nutrient solution. Revista Brasileira de Ciência do Solo 36: 1528–1537.

    Article  CAS  Google Scholar 

  • Fernandes, A.M., R.P. Soratto, and B.L. Silva. 2011. Extração e exportação de nutrientes em cultivares de batata: I - Macronutrientes. Revista Brasileira de Ciência do Solo 35: 2039–2056.

    Article  CAS  Google Scholar 

  • Fernandes, A.M., R.P. Soratto, B.L. Silva, and G.D. Souza-Schlick. 2010. Crescimento, acúmulo e distribuição de matéria seca em cultivares de batata na safra de inverno. Pesquisa Agropecuária Brasileira 45: 826–835.

    Article  Google Scholar 

  • Fleisher, D.H.Q., D.J. Wang, J.A. Chun Timlin, and V.R. Reddy. 2013. Effects of carbon dioxide and phosphorus supply on potato dry matter allocation and canopy morphology. Journal of Plant Nutrition 36: 566–586.

    Article  CAS  Google Scholar 

  • Freeman, K.L., P.R. Franz, and R.W. Jong. 1998. Effect of phosphorus on the yield, quality and petiolar phosphorus concentrations of potatoes (cvv. Russet Burbank and Kennebec) grown in the krasnozem and duplex soils of Victoria. Australian Journal of Experimental Agriculture 38: 83–93.

    Article  Google Scholar 

  • Holford, I.C.R. 1997. Soil phosphorus: its measurement, and its uptake by plants. Australian Journal of Soil Research 35: 227–239.

    Article  CAS  Google Scholar 

  • Houghland, G.V.C. 1960. The influence of phosphorus on the growth and physiology of the potato plant. American Potato Journal 37: 127–138.

    Article  CAS  Google Scholar 

  • Islam, M., S. Ali, and R. Hayat. 2009. Effect of integrated application of phosphorus and sulphur on yield and micronutrient uptake by chickpea (Cicer arietinum L.). International Journal of Agriculture and Biology 11: 33–38.

    CAS  Google Scholar 

  • Jenkins, P.D., and S. Mahmood. 2003. Dry matter production and partitioning in potato plants subjected to combined deficiencies of nitrogen, phosphorus and potassium. Annals of Applied Biology 143: 215–229.

    Article  Google Scholar 

  • Jones Junior, J.B., B. Wolf, and H.A. Mill. 1991. Plant analysis handbook, 213. Athens: Micro–macro Publishing.

    Google Scholar 

  • Lorenzi, J.O., Miranda Filho, H.S. and van Raij, B. 1997. Raízes e tubérculos. In Recomendações de adubação e calagem para o Estado de São Paulo, ed. B. van Raij, H. Cantarella, J.A. Quaggio, and A.M.C. Furlani, 221–229. 2nd ed. Tech. Bull. 100. Campinas, Brazil: Instituto Agronômico.

  • Luk, E., L.T. Jensen, and V.C. Culotta. 2003. The many highways for intracellular trafficking of metals. Journal of Biological Inorganic Chemistry 8: 803–809.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, J., A. Läuchli, and E. Epstein. 1991. Vegetative growth of common bean in response to phosphorus nutrition. Crop Science 31: 380–387.

    Article  CAS  Google Scholar 

  • Ma, J., and E. Takahashi. 1990. Effect of silicon on the growth and phosphorus uptake of rice. Plant and Soil 126: 115–119.

    Article  CAS  Google Scholar 

  • Malavolta, E., G.C. Vitti, and S.A. Oliveira. 1997. Avaliação do estado nutricional de plantas: Princípios e aplicações, 2nd ed, 319. Piracicaba: Potafos.

    Google Scholar 

  • Marenco, R.A., and N.F. Lopes. 2009. Fisiologia Vegetal: Fotossíntese, respiração, relações hídricas, nutrição mineral, 3rd ed, 486. Viçosa: UFV.

    Google Scholar 

  • Marschner, P. 2012. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed, 672. San Diego: Academic.

  • Marsh, K.B., L.A. Peterson, and B.H. McCown. 1989. A microculture method for assessing nutrient uptake II. The effect of temperature on manganese uptake and toxicity in potato shoots. Journal of Plant Nutrition 12: 219–232.

    Article  CAS  Google Scholar 

  • Marshall, C., and I.F. Wardlaw. 1973. A comparative study of the distribution and speed of movement of 14C assimilates and foliar-applied 32P-labelled phosphate in wheat. Australian Journal of Biological Sciences 26: 1–13.

    CAS  Google Scholar 

  • Mushagalusa, G.N., J.-F. Ledent, and X. Draye. 2008. Shoot and root competition in potato/maize intercropping: effects on growth and yield. Environmental and Experimental Botany 64: 180–188.

    Article  Google Scholar 

  • Nava, G., A.R. Dechen, and V.L. Iuchi. 2007. Produção de tubérculos de batata-semente em função das adubações nitrogenada, fosfatada e potássica. Horticultura Brasileira 25: 365–370.

    Article  Google Scholar 

  • Nichols, D.G., and D.V. Beardsell. 1981. Interactions of calcium, nitrogen and potassium with phosphorus on the symptoms of toxicity in grevillea cv. ‘Poorinda Firebird’. Plant and Soil 61: 437–445.

    Article  CAS  Google Scholar 

  • Novais, R.F., and T.J. Smyth. 1999. Fósforo em solo e planta em condições tropicais, 399. Viçosa: Universidade Federal de Viçosa.

    Google Scholar 

  • Pittman, J.K. 2005. Managing the manganese: molecular mechanisms of manganese transport and homeostasis. New Phytologist 167: 733–742.

    Article  CAS  PubMed  Google Scholar 

  • Pursglove, J., and F.E. Sanders. 1981. The growth and phosphorus economy of the early potato (Solanum tuberosum L.). Communication in Soil Science and Plant Analysis 12: 1105–1121.

    Article  Google Scholar 

  • Richards, L.A. 1941. Soil moisture tensiometer materials and construction. Washington, DC, USA: USDA-ARS. http://afrsweb.usda.gov/sp2userfiles/place/53102000/pdf_pubs/p0015.pdf (accessed 22 Mar. 2012).

  • Rosen, C.J., and P.M. Bierman. 2008. Potato yield and tuber set as affected by phosphorus fertilization. American Journal of Potato Research 85: 110–120.

    Article  CAS  Google Scholar 

  • Rosen, C.J., K.A. Kelling, J.C. Stark, and G.A. Porter. 2014. Optimizing phosphorus fertilizer management in potato production. American Journal of Potato Research online first.

  • Sharma, U.C., and B.R. Arora. 1987. Effect of phosphorus application on the micronutrient uptake of potato (Solanum tuberosum L.). Journal of Micronutrient Analysis 3: 137–145.

    Google Scholar 

  • Sharpley, A.N., and S. Rekolaineau. 1997. Phosphorus in agriculture and its environmental implications. In Phosphorus loss from soil to water, ed. H. Tunney, O.T. Carton, P.C. Brookes, and A.E. Johnston, 1–54. Cambridge: CAB International Press.

    Google Scholar 

  • Singh, D.V., and C. Swarup. 1982. Copper nutrition of wheat in relation to nitrogen and phosphorus fertilization. Plant and Soil 65: 433–436.

    Article  CAS  Google Scholar 

  • Soratto, R.P., A.M. Fernandes, and G.D. Souza-Schlick. 2011. Extração e exportação de nutrientes em cultivares de batata: II - Micronutrientes. Revista Brasileira de Ciência do Solo 35: 2057–2071.

    Article  CAS  Google Scholar 

  • Tekalign, T., and P.S. Hammes. 2005. Growth and productivity of potato as influenced by cultivar and reproductive growth. I. Stomatal conductance, rate of transpiration, net photosynthesis, and dry matter production and allocation. Scientia Horticulturae 105: 29–44.

    Article  Google Scholar 

  • van Raij, B., J.C. Andrade, H. Cantarella, and J.A. Quaggio. 2001. Análise química para avaliação da fertilidade de solos tropicais, 284. Campinas: Instituto Agronômico.

    Google Scholar 

Download references

Acknowledgments

Thanks to FAPESP (São Paulo Research Foundation) for supporting this research and providing a scholarship to the first author (2010/04987-6). Thanks to CNPq (The National Council for Scientific and Technological Development) for providing a research award to the second author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogério P. Soratto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, A.M., Soratto, R.P. & Pilon, C. Soil Phosphorus Increases Dry Matter and Nutrient Accumulation and Allocation in Potato Cultivars. Am. J. Potato Res. 92, 117–127 (2015). https://doi.org/10.1007/s12230-014-9422-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-014-9422-8

Keywords

Navigation