Skip to main content

Advertisement

Log in

Fossil Records in the Lythraceae

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The Lythraceae (Myrtales) are a family of 28 genera and ca. 600 species constituting with the Combretaceae and sister family Onagraceae a major lineage of the Myrtales and including the former Sonneratiaceae, Duabangaceae, Punicaceae, and Trapaceae. The fossil record of the family is extensive and significant new discoveries have been added to the record in recent years. This review provides a vetted summary of fossils attributed to the Lythraceae, their geographic distributions, and their stratigraphic ranges. It anticipates the use of the information to generate robustly dated molecular phylogenies to accurately reconstruct the evolutionary and biogeographic history of the family. Fossils of 44 genera or form genera have been attributed to the Lythraceae; 24 are accepted here as lythracean. Fourteen of the 28 modern genera have fossil representatives: Adenaria, Crenea, Cuphea, Decodon, Duabanga, Lafoensia, Lagerstroemia, Lawsonia, Lythrum, Pemphis, Punica, Sonneratia, Trapa, and Woodfordia. Ten extinct genera are recognized. The most common kinds of fossil remains are seeds and pollen. The only fossil flower confidently accepted in the family is the extinct genus Sahnianthus from the Early Paleocene of India. The oldest confirmed evidence of the Lythraceae is pollen of Lythrum/Peplis from the Late Cretaceous (early Campanian, 82−81 Ma) of Wyoming. Seeds of Decodon from the late Campanian (73.5 Ma) of northern Mexico are next oldest. Sonneratia, Lagerstroemia, and extinct Sahnianthus first appear in the Paleocene of the Indian subcontinent; extinct Hemitrapa fruits first occur in the Paleocene of northwestern North America. Diversification of the Lythraceae occurred primarily during two major periods of global temperature change, during the Paleocene-Eocene Thermal Maximum and from the middle Miocene forward when temperatures decreased markedly and seasonality and dry-adapted vegetation types became more prominent. Fossils of the Lythraceae from South America and Africa are limited in number. The few dates available for South American genera are comparatively young and diversification of the largest genus, Cuphea (ca. 240 species), was mainly a Quaternary event. A phylogeny of the family is briefly explored and examples of specialized characters occurring in the oldest known genera are noted. The fossil record of the Lythraceae is presently too fragmentary to confidently reconstruct the early history of the family. The record indicates, however, that the family was well-diversified and widely dispersed globally over a wide latitudinal range by the end of the Paleocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Literature Cited

  • Agarwal, A. 2002. Contributions to the fossil leaf assemblage from the Miocene Neyveli lignite deposits, Tamil Nadu, India. Palaeontographica Abteilung B 261: 167–206.

    Google Scholar 

  • Ahmed, B., A. M. Abbassi, A. Bano & K. M. Khan. 1991. Duabangoxylon pakistanicum sp. nov., a new taxon of Sonneratiaceae from Ranikot Fort area. Pakistan Journal of Botany 23: 55–61.

    Google Scholar 

  • Akers, W. H. 1979. Planktic foraminifera and calcareous nanoplankton biostratigraphy of the Neogene of Mexico. Part 1-Middle Pliocene. Tulane Studies in Geology and Paleontology 15: 1–32.

    Google Scholar 

  • Ambwani, K. 1991. Leaf impressions belonging to the Tertiary age of northeast India. Phytomorphology 41: 139–146.

    Google Scholar 

  • ———, R. K. Kar & A. Sahni. 2001. Reinvestigation on Sahnipushpam Shukla from the Deccan Intertrappean sediments of Madhya Pradesh, India. Ameghiniana 38: 393–398.

    Google Scholar 

  • Andrieu, V., M. H. Field, P. Ponel, J. Guiot, P. Guenet, J.-L. de Beaulieu, M. Reille & M.-T. Morzadec-Kerfoum. 1997. Middle Pleistocene temperate deposits at Dingé Ille-et-Vilaine, northwest France: Pollen, plant and insect macrofossil analysis. Journal of Quaternary Science 12: 309–331.

    Article  Google Scholar 

  • Antal, J. S. & N. Awasthi. 1993. Fossil flora from the Himalayan foothills of Darjeeling District, West Bengal and its palaeoecological and phytogeographical significance. Palaeobotanist 42: 14–60.

    Google Scholar 

  • Assarsson, G. 1927. Fossilt pollen av Trapa natans. Geologiska Föreningens Förhandlingar (Stockholm) 49: 293–294.

    Article  Google Scholar 

  • Avise, J. C. 2009. Timetrees: Beyond cladograms, phenograms, and phylograms. pp 19–25. In: S. B. Hedges & S. Kumar (eds). The Timetree of Life. Oxford University Press, Oxford, England.

    Google Scholar 

  • Awasthi, N. 1969. A fossil wood of Sonneratia from the Tertiary of South India. Palaeobotanist 17: 254–257.

    Google Scholar 

  • ——— 1981a. Reinvestigation of Sapindoxylon indicum Navale from the Cuddalore series near Pondicherry. Palaeobotanist 27: 161–165.

    Google Scholar 

  • ——— 1981b. Fossil woods belonging to Sterculiaceae and Lythraceae from the Cuddalore series near Pondicherry. Palaeobotanist 27: 182–189.

    Google Scholar 

  • ——— & M. Prasad. 1987. Occurrence of Duabanga in the Siwalik sediments. Geophytology 17: 292–294.

    Google Scholar 

  • Axelrod. 1944. The Sonoma Flora. Pp 167–206 + pl. 34–39. In: Chaney, R. W. (ed). Pliocene Floras of California and Oregon. Carnegie Institution of Washington Publication 553.

  • Baas, P. 1986. Wood anatomy of Lythraceae—additional genera (Capuronia, Galpinia, Haitia, Orias, and Pleurophora). Annals of the Missouri Botanical Garden 73: 810–819.

    Article  Google Scholar 

  • ——— & R. C. V. J. Zweypfenning. 1979. Wood anatomy of the Lythraceae. Acta Botanica Neerlandica 28: 117–155.

    Google Scholar 

  • Backer, C. A. & C. G. G. J. van Steenis. 1954. Sonneratiaceae. pp 280–289. In: C. G. G. J. van Steenis (ed). Flora Malesiana Vol. 4. Noordhoff-Kolff N. V, Jakarta, Indonesia.

    Google Scholar 

  • Baikovskaja, R. N. 1963. Basics in paleontology: Gymnosperms and angiosperms. State Scientific Technological Institute of Geology and Protection of Mineral Resources. pp 637–638. In: A. L. Takhtajan, V. A. Vakhranmeev, & G. P. Radchenko (eds). Osnovy Palentologii: Golosemennye I Pokrytosemennye. Gosud. Naučno-Tehn. Inst. Lit. Geol. Očr, NEDP, Moscow.

    Google Scholar 

  • Bakels, C. 1995. Late Glacial and Holocene pollen records from the Aisne and Vesle valleys, Northern France: The pollen diagrams Maizy-Cuiry and Bazoches. Mededelingen Rijks Geologische Dienst 52: 221–234.

    Google Scholar 

  • Bande, M. B. 1992. The Palaeogene vegetation of peninsular India (megafossil evidences). Palaeobotanist 40: 275–284.

    Google Scholar 

  • ——— & U. Prakash. 1984. Occurrence of Evodia, Amoora, and Sonneratia from the Palaeogene of India. Pp 97–114. In: Sharma, A. K. et al. (eds). Symposium on Evolutionary Botany and Biostratigraphy, Prof. A. K. Ghosh Commerative Volume, Calcutta, India.

  • Bande, M. B. & U. Prakash. 1986. The Tertiary flora of Southeast Asia with remarks on its palaeoenvironment and phytogeography of the Indo-Malayan region. Review of Palaeobotany and Palynology 49: 203–233.

    Article  Google Scholar 

  • Bannerjee, B. C. & T. A. Rao. 1975. On foliar sclereids in a few species of Sonneratia. Current Science 44: 639–640.

    Google Scholar 

  • Barber, J. C., A. Ghebretinsae & S. A. Graham. 2010. An expanded phylogeny of Cuphea (Lythraceae) and a North American monophyly. Plant Systematics and Evolution 289: 35–44.

    Article  Google Scholar 

  • Barberi, M., M. L. Salgado-Labouriau & K. Suguio. 2000. Paleovegetation and paleoclimate of “Vereda de Águas Emendadas”, central Brazil. Journal of South American Earth Sciences 13: 241–254.

    Article  Google Scholar 

  • Barnett, J. 1989. Palynology and paleoecology of the Tertiary Weaverville Formation, northwestern California, U.S.A. Palynology 13: 195–246.

    Article  Google Scholar 

  • Barrón, E., R. Rivas-Carballo, J. M. Postigo-Mijarra, C. Alcalde-Olivares, M. Vieira, L. Castro, J. Pais & M. Valle-Hernández. 2010. The Cenozoic vegetation of the Iberian Peninsula: A synthesis. Review of Palaeobotany and Palynology 162: 382–402.

    Article  Google Scholar 

  • Bartlett, A. S. & E. S. Barghoorn. 1973. Phytogeographic history of the Isthmus of Panama during the past 12,000 years (a history of vegetation, climate, and sea-level change). pp 203–299. In: A. Graham (ed). Vegetation and vegetational history of Northern Latin America. Elsevier Science Publishers, Amsterdam, The Netherlands.

    Google Scholar 

  • Behling, H. 1997. Late Quaternary vegetation, climate, and fire history from the tropical mountain region of Morro de Itapeva, SE Brazil. Palaeogeography, Palaeoclimatology, and Palaeoecology 129: 407–422.

    Article  Google Scholar 

  • Bell, C. D., D. E. Soltis & P. S. Soltis. 2010. The age and diversification of the angiosperms re-revisited. American Journal of Botany 97: 1296–1303.

    Article  PubMed  Google Scholar 

  • Bell, W. A. 1949. Upper Cretaceous and Paleocene floras of Western Alberta. Canada Department of Mines and Resources, Geological Survey Bulletin 13: 1–231.

    Google Scholar 

  • Benton, M. J., P. C. J. Donoghue & R. J. Asher. 2009. Calibrating and constraining molecular clocks. pp 35–86. In: S. B. Hedges & S. Kumar (eds). The Timetree of Life. Oxford University Press, Oxford, England.

    Google Scholar 

  • Berger, W. 1957. Eine neue fossile Wassernuss aus den untermiozänen Braunkohlenablagerungen von Langau bei Geras in Niederösterreich. Phyton (Austria) 7: 152–158.

    Google Scholar 

  • Berrio, J. C., H. Hooghiemstra, H. Behling, P. Botero & K. Van der Borg. 2002. Late-Quaternary savanna history of the Colombian Llanos Orientales from Lagunas Chenevo and Mozambique: a transect synthesis. The Holocene 12: 35–48.

    Google Scholar 

  • Berry, E. W. 1914a. Two new Tertiary species of Trapa. Torreya 14: 105–108.

    Google Scholar 

  • ——— 1914b. The affinities and distribution of the lower Eocene flora of southeastern North America. Proceedings of the American Philosophical Society 53: 129–250.

    Google Scholar 

  • ——— 1916a. The lower Eocene floras of southeastern North America. United States Geological Survey, Professional Paper 91. 353 pp + pl. 10–117.

  • ——— 1916b. The flora of the Citronelle Formation. United States Geological Survey, Professional Paper 98: 193–204 + pl. 45–47.

  • Berry, E. W. 1917. Fossil plants from Bolivia and their bearing upon the age of uplift of the eastern Andes. Proceedings of the United States National Museum 54: 103–164.

    Article  Google Scholar 

  • ——— 1928. Flora of the Esmeralda Formation in western Nevada. Proceedings of the United States National Museum 72(Art. 23): 1–15.

    Google Scholar 

  • ——— 1935. A preliminary contribution to the floras of Whitemud and Ravenscrag Formations. Canadian Geological Survey, Memoir 182: 1–65.

    Google Scholar 

  • ——— 1939a. The fossil flora of Potosí, Bolivia. pp 9–72. In: E. B. Mathews (ed). Contributions to the paleobotany of Middle and South America. Johns Hopkins University Studies in Geology 13. The Johns Hopkins Press, Baltimore. pl. 3–9.

    Google Scholar 

  • ——— 1939b. A Miocene flora from the gorge of the Yumurí River, Matanzas, Cuba. pp 95–135. In: E. B. Mathews (ed). Contributions to the paleobotany of Middle and South America. Johns Hopkins University Studies in Geology 13. The Johns Hopkins Press, Baltimore.

    Google Scholar 

  • Bharadwaj, K. & K. N. Kaul. 1981. Trapa: fossil record, distribution and systematics. Geophytology 11: 195–203.

    Google Scholar 

  • Biradar, N. V. & T. S. Mahabale. 1973 [1975]. Sonneratioxylon from the Tertiary beds of Mohgaonkalan, M. P., India. Palaeobotanist 22: 211–218.

  • ——— & ———. 1976. Structure of embryo in the seeds of Enigmocarpon parijai Sahni. Palaeobotanist 23: 25–29.

    Google Scholar 

  • Biswas, S. K. 1992. Tertiary stratigraphy of Kutch. Journal of the Paleontological Society of India 37: 1–29.

    Google Scholar 

  • Boltenhagen, E. 1976. Pollens et spores Sénoniens du Gabon. Cahiers de Micropaléontolgie 3: 1–21. 4 pl.

    Google Scholar 

  • Bonnefille, R. & G. Rioliet. 1988. The Kashiru pollen sequence (Burundi) palaeoclimatic implications for the last 40,000 year B.P. in tropical Africa. Quaternary Research 30: 19–35.

    Article  CAS  Google Scholar 

  • Boulay, N. 1899. Flore fossile de Gergovie. Annales de la Société Scientifique de Bruxelles 23: 55–78. pl. 1–10.

    Google Scholar 

  • Boureau, E., M. Cheboldaeff-Salard, J.-C. Koeniguer & P. Louvet. 1983. Evolution des flores et de la végétation Tertiaires en Afrique, au nord de l’Equateur. Bothalia 14: 355–367.

    Google Scholar 

  • Bridgwater, S. D. & P. Baas. 1978. Wood anatomy of the Punicaceae. IAWA Bulletin 1978: 3–6.

    Google Scholar 

  • Britton, N. L. 1892. Note on a collection of Tertiary fossil plants from Potosí, Bolivia. Contributions from the Herbarium of Columbia College 27: 250–257.

    Google Scholar 

  • Brown, R. W. 1935. Miocene leaves, fruits, and seeds from Idaho, Oregon, and Washington. Journal of Paleontology 9: 572–587. pl. 67–69.

    Google Scholar 

  • ——— 1937. Additions to some fossil floras of the western United States. Geological Survey Professional Paper 186-J: 163–206.

    Google Scholar 

  • ——— 1962. Paleocene flora of the Rocky Mountains and Great Plains. Geological Survey Professional Paper 375: 1–119. 69 pl.

    Google Scholar 

  • ——— & E. Houldsworth. 1939. The fruit of Trapa? microphylla Lesquereux. Journal of the Washington Academy of Science 29: 36–39.

    Google Scholar 

  • Budantzev, L. J. 1960. The waterchestnuts (Trapa and Hemitrapa) from the Tertiary deposits of the southeast coast of Lake Baikal. Botaničeskii Žurnal 45: 139–144. 2 pls.

    Google Scholar 

  • Cavagnetto, C. 2002. La palynoflore du Bassin d’As Pontes en Galice dans le Nord Ouest de l’Espagne à la limite Rupélien-Chattien (Oligocène). Palaeontographica Abteilung B 263: 161–204.

    Google Scholar 

  • ——— & P. Anadón. 1996. Preliminary palynological data on floristic and climatic changes during the middle Eocene-early Oligocene of the eastern Ebro Basin, northeast Spain. Review of Palaeobotany and Palynology 92: 281–305.

    Article  Google Scholar 

  • Cevallos-Ferriz, S. R. S. & R. A. Stockey. 1988. Permineralized fruits and seeds from the Princeton Chert (middle Eocene) of British Columbia: Lythraceae. Canadian Journal of Botany 66: 303–312.

    Article  Google Scholar 

  • ———, ——— & K. B. Pigg. 1991. The Princeton chert evidence for in-situ aquatic plants. Review of Palaeobotany and Palynology 70: 173–185.

    Article  Google Scholar 

  • Chandler, M. E. J. 1957. The Oligocene flora of the Bovey Tracey Lake Basin, Devonshire. Bulletin of the British Museum (Natural History). Geology 3: 71–123.

    Google Scholar 

  • ——— 1960. Plant remains of the Hengistbury and Barton beds. Bulletin of the British Museum (Natural History) Geology 4: 191–238. pls. 29–35.

    Google Scholar 

  • ——— 1961a. Flora of the Lower Headon Beds of Hampshire and the Isle of Wight. Bulletin of the British Museum (Natural History). Geology 5: 93–157.

    Google Scholar 

  • ——— 1961b. pp 354. The Lower Tertiary Floras of southern England. I. Palaeocene floras, London Clay Flora (Supplement). Bulletin of the British Museum (Natural History), London.

    Google Scholar 

  • ——— 1962. The Lower Tertiary floras of southern England. II. Flora of the Pipe-Clay Series of Dorset (Lower Bagshot). British Museum, London. x + 176 pp + 29 pl.

    Google Scholar 

  • ——— 1963a. Revision of the Oligocene floras of the Isle of Wight. Bulletin of the British Museum (Natural History) Geology 6: 323–383.

    Google Scholar 

  • ——— 1963b. The Lower Tertiary Floras of southern England. III. Flora of the Bournemouth Beds: The Boscombe, and the Highcliff Sands. British Museum, London. x + 169 pp + 25 pl.

    Google Scholar 

  • ——— 1964. The Lower Tertiary floras of southern England. IV. A summary and survey of findings in the light of recent botanical observations. British Museum (Natural History), London. xii + 151 pp + 4 pl.

    Google Scholar 

  • Chaney, R. W. & D. I. Axelrod. 1959. Miocene Floras of the Columbia Plateau. Part II. Systematic considerations. Carnegie Institution of Washington Publication 627: 135–229. 44 pls.

    Google Scholar 

  • Cheng, Y.-M., C.-S. Li, X.-M. Jiang & Y.-F. Wang. 2007. A new species of Lagerstroemioxylon (Lythraceae) from the Pliocene of Yuanmou, Yunnan, China. Acta Phytotaxonomica Sinica 45: 315–320.

    Article  Google Scholar 

  • Chitaley, S. D. 1951. Fossil microflora from the Mohgaon Kalan beds of the Madhya Pradesh, India. Proceedings of the National Institute of Science of India 17: 373–383.

    Google Scholar 

  • ——— 1955. A further contribution to the knowledge of Sahnianthus. Journal of the Indian Botanical Society 34: 121–129.

    Google Scholar 

  • ——— 1964. Further observations on Sahnipushpam. Journal of the Indian Botanical Society 43: 69–74.

    Google Scholar 

  • ——— 1968. Sonneratiorhizos raoi gen. et sp. nov. from the Deccan Intertrappean Beds of India. Palaeobotanist 17: 244–246. 1 pl.

    Google Scholar 

  • ——— 1977. Enigmocarpon parijai and its allies. pp 421–429. In: B. Padhi (ed). Frontiers of Plant Sciences—Prof. P. Parija Felicitation Volume. Goswani Press, Cutlack, India.

    Google Scholar 

  • ——— & U. R. Kate. 1977. Enigmocarpon sahnii sp. nov. from the Mohgaonkalan beds of India. Review of Palaeobotany and Palynology 23: 389–398.

    Article  Google Scholar 

  • ——— & M. Z. Patel. 1975. Raoanthus intertrappea, a new petrified flower from India. Palaeontographica Abteilung B 153: 141–149.

    Google Scholar 

  • Chochiyeva, K. I. 1967. Discovery of fossil fruits of the water chestnut (Trapa L.) in Georgia. Sakartvelos SSR Mećnierebaa Akademiis Moambe 48: 175–180. Akademiya Nauk Gruzinskoy SSR, Tbilisi.

    Google Scholar 

  • Choi, S.-K., K. Kim, E.-K. Jeong, K. Terada, M. Suzuki & H. Uematsu. 2010. Fossil woods from the Miocene in the Yamagata Prefecture, Japan. IAWA Journal 31: 95–117.

    Google Scholar 

  • Chung, T.-F. & T.-C. Huang. 1972. Paleoecological study of Taipei Basin. Taiwania 17: 117–141.

    Google Scholar 

  • Collinson, M. E. 1983. Fossil plants of the London Clay. The Palaeontological Association, London. 121 pp.

    Google Scholar 

  • ——— 1986. Appendix: The Felpham flora: a preliminary report. In: Bone, D. A., The stratigraphy of the Reading Beds (Palaeocene), at Felpham, West Sussex. Tertiary Research 8: 17–32.

    Google Scholar 

  • ——— & J. J. Hooker. 2003. Paleogene vegetation of Eurasia: Framework for mammalian faunas. In: Reumer, J. W. F. & W. Wessels (eds). Distribution and migration of Tertiary mammals in Eurasia. Deinsea 10: 41–83.

  • Condit, C. 1938. The San Pablo flora of west-central California. Carnegie Institution of Washington Publication 476: 217–268. 7 pls.

    Google Scholar 

  • Conti, E., T. Eriksson, J. Schönenberger, K. J. Sytsma & D. A. Baum. 2002. Early Tertiary out-of-India dispersal of Crypteroniaceae: Evidence from phylogeny and molecular dating. Evolution 56: 1931–1942.

    PubMed  Google Scholar 

  • Cook, C. D. K. 1978. The Hippuris syndrome. pp 163–176. In: H. E. Street (ed). Essays in plant taxonomy. Academic, New York.

    Google Scholar 

  • ——— 1979. A revision of the genus Rotala (Lythraceae). Boissiera 29: 1–156.

    Google Scholar 

  • Corner, E. J. H. 1976. The seeds of dicotyledons, vol. 2. Cambridge University Press, Cambridge.

    Google Scholar 

  • Coz Campos, D. 1964. Étude des grains de pollen des Lythracées du Pérou. Pollen et Spores 6: 303–345.

    Google Scholar 

  • Cripps, J. A., M. Widdowson, R. A. Spicer & D. W. Jolley. 2005. Coastal ecosystem responses to late stage Deccan Trap volcanism: The post K—T boundary (Danian) palynofacies of Mumbai (Bombay), West India. Palaeogeography, Palaeoclimatology, Palaeoecology 216: 303–332.

    Article  Google Scholar 

  • Davis, O. K. & D. S. Shafer. 1992. A Holocene climatic record for the Sonoran Desert from pollen analysis of Montezuma Well, Arizona, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 92: 107–119.

    Article  Google Scholar 

  • Dawson, J. W. 1875. Notes on the plants, collected by Mr. G. M. Dawson, from the lignite Tertiary Deposits, near the forty-ninth parallel. Report on the geology and resources of the region in the vicinity of the forty-ninth parallel. Appendix A: 327–331. British North American Boundary Commission, Dawson Brothers, London.

  • ——— 1886. On the fossil plants of the Laramie formation of Canada. Proceedings and Transactions of the Royal Society of Canada 4: 19–34. 2 pls.

    Google Scholar 

  • de Saporta, G. & A. F. Marion. 1876. Recherches sur les Végétaux fossiles de Meximieux. H. Georg, Lyon. 1876. [Punica, p 209 + pl. 38, figs. 9–14].

  • Delcourt, H. R. 1979. Late Quaternary vegetation history of the eastern highland rim and adjacent Cumberland Plateau of Tennessee. Ecological Monographs 49: 255–280.

    Article  Google Scholar 

  • Delcourt, P. A. 1980. Goshen Springs: Late Quaternary vegetation record for southern Alabama. Ecology 61: 371–386.

    Article  Google Scholar 

  • Deng, C.-Y., S.-Z. Guo & P. Lin. 2004. Wood anatomy of some Sonneratia species in relation to phylogenetic significance. Journal of Tropical and Subtropical Botany 12: 213–220.

    Google Scholar 

  • Denk, T., F. Grimsson, R. Zetter, & L. A. Simonarson. 2011. Late Cainozoic Floras of Iceland. Springer Verlag. 854 pp.

  • De Oliveira, P. E., A. Magnólia, F. Barreto & K. Suguio. 1999. Late Pleistocene/Holocene climatic and vegetational history of the Brazilian caatinga: the fossil dunes of the middle São Francisco river. Palaeogeography, Palaeoclimatology, Palaeoecology 152: 319–337.

    Article  Google Scholar 

  • Dickinson, K. A. 1995. Geology, geochemistry, and uranium favorability of the Tertiary Kenai Group in the Susitna Lowlands at the northern end of Cook Inlet Basin, Alaska. United States Geological Survey Bulletin 2098-A: A1–A33.

    Article  Google Scholar 

  • Ding, B.-Y., Y.-Y. Fang, H.-M. Zhang, H. Liang & L. Zhao. 1991. Studies on the pollen morphology of Trapa from Zhejiang. Acta Phytotaxonomica Sinica 29: 172–177.

    Google Scholar 

  • Dorf, E. 1936. II. A late Tertiary flora from southwestern Idaho. Carnegie Institution of Washington Publication 476: 73–124. 3 pls.

    Google Scholar 

  • ——— 1942. Upper Cretaceous floras of the Rocky Mountain region. II. Flora of the Lance Formation at its type locality, Niobrara County, Wyoming. Carnegie Institution of Washington Publication 508: 83–124. 17 pls.

    Google Scholar 

  • Dorofeev, P. I. 1960. On the Tertiary flora of Byelorussia. Botaničeskij Žurnal 45: 1418–1434.

    Google Scholar 

  • ——— 1963. Tertiary Floras of Western Siberia. Izdat. Akad. Nauk, Moscow/Leningrad. 343 pp.

    Google Scholar 

  • ——— 1977. On the taxonomy of fossil Decodon J. F. Gmel. (Lythraceae). Botaničeskij Žurnal 62: 664–672.

    Google Scholar 

  • Douglas, J. G. 1963. Nut-like impressions attributed to aquatic dicotyledons from Victorian Mesozoic sediments. Proceedings of the Royal Society of Victoria 76: 23–28.

    Google Scholar 

  • ——— 1994. Cretaceous vegetation: the macrofossil record. pp 171–188. In: R. S. Hill (ed). History of the Australian vegetation: Cretaceous to Recent. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Du, N. 1988. On some silicified woods from the Quaternary of Indonesia. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen B 91: 339–361. 5 pls.

    Google Scholar 

  • Duke, N. C. & B. R. Jackes. 1987. A systematic revision of the mangrove genus Sonneratia (Sonneratiaceae) in Australasia. Blumea 32: 277–302.

    Google Scholar 

  • Dwivedi, J. N. & R. K. Shukla. 1958. On the pollen grains and pollination of Sahnianthus parijai Shukla from the intertrappean beds of the Deccan. Journal of the Palaeontological Society of India 3: 105–108.

    Google Scholar 

  • Dwivedi, H. D., M. Prasad & P. P. Tripathi. 2006. Fossil leaves belonging to the family Fabaceae and Lythraceae from the Siwalik sediments of Koilabas area, western Nepal. Geophytology 36: 113–121.

    Google Scholar 

  • Eberth, D. A., C. R. Delgado-de Jesús, J. F. Lerbekmo, D. B. Brinkman, R. A. Rodríguez-de la Rosa & S. D. Sampson. 2004. Cerro del Pueblo Fm (Difunta Group, upper Cretaceous), Parras Basin, southern Coahuila, Mexico: reference sections, age, and correlation. Revista Mexicana de Ciencias Geológicas 21: 335–352.

    Google Scholar 

  • Endô, S. 1934. The geological age of the Fu-shun group, South Manchuria. Proceedings of the Imperial Academy of Japan 10: 486–489.

    Google Scholar 

  • Erdei, B., M. Dolezych & L. Hably. 2009. The buried Miocene forest at Bükkábrány, Hungary. Review of Palaeobotany and Palynology 155: 69–79.

    Article  Google Scholar 

  • Estrada-Ruiz, E., L. Calvillo-Canadell & S. R. S. Cevallos-Ferriz. 2009. Upper Cretaceous aquatic plants from Northern Mexico. Aquatic Botany 90: 282–288.

    Article  Google Scholar 

  • von Ettingshausen, C. 1879. Report on phyto-palaeontological investigations of the fossil flora of Sheppey. Proceedings of the Royal Society of London 29: 388–396.

    Article  Google Scholar 

  • Eyde, R. H. 1972. Note on geologic histories of flowering plants. Brittonia 24: 111–116.

    Article  Google Scholar 

  • Fairon-Demaret, M. & T. Smith. 2002. Fruits and seeds from the Tienen Formation at Dormaal, Palaeocene-Eocene transition in eastern Belgium. Review of Palaeobotany and Palynology 122: 47–62.

    Article  Google Scholar 

  • Ferguson, D. K., R. Zetter & K. N. Paudayal. 2007. The need for the SEM in palaeopalynology. Comptes Rendus Palevol 6: 423–430.

    Article  Google Scholar 

  • Flenley, J. R., B. K. Maloney, D. Ford & G. Hallam. 1975. Trapa natans in the British Flandrian. Nature 257: 39–41.

    Article  Google Scholar 

  • Friis, E. M. 1975. Climatic implications of microcarpological analyses of the Miocene Fasterholt flora, Denmark. Bulletin of the Geological Society of Denmark 24: 179–191.

    Google Scholar 

  • ——— 1979. The Damgaard flora: A new middle Miocene flora from Denmark. Bulletin of the Geological Society of Denmark 27: 117–142.

    Google Scholar 

  • ——— 1980. Microcarpological studies of middle Miocene floras of western Denmark. Unpublished Ph.D. dissertation, University of Aarhus, Aarhus, Denmark.

  • Friis, E. M. 1985. Angiosperm fruits and seeds from the middle Miocene of Jutland (Denmark). Det Kongelige Danske Videnskaberne Selskab, Biologiske Skrifter 24: 1–165.

    Google Scholar 

  • Fujiki, T. & Y. Yasuda. 2004. Vegetation history during the Holocene from Lake Hyangho, northeastern Korea. Quaternary International 123–125: 63–69.

    Article  Google Scholar 

  • ———, A. Momohara & Y. Yasuda. 2001. Morphology of fossil Lagerstroemia pollen in the interglacial sediments in Japan. Japanese Journal of Historical Botany 10: 91–99.

    Google Scholar 

  • Furtado, C. X. & M. Srisuko. 1969. A revision of Lagerstroemia L. (Lythraceae). Gardens’ Bulletin (Singapore) 24: 185–334.

    Google Scholar 

  • Gamble, J. S. 1972. A manual of Indian timbers, ed. 2nd. Bishen Singh, Dehra Dun, India.

    Google Scholar 

  • Germeraad, J. H., C. A. Hopping & J. Muller. 1968. Palynology of Tertiary sediments from tropical areas. Review of Palaeobotany and Palynology 6: 189–348.

    Article  Google Scholar 

  • Girotti, O., L. C. Barbato, D. Esu, E. Gliozzi, T. Kotsakis, E. Martinetto, C. Petronio, R. Sardella & E. Squazzini. 2003. The section of Torre Picchio (Terni, Umbria, Central Italy): A Villafranchian site rich in vertebrates, molluscs, ostracods and plants. Rivista Italiana di Paleontologia e Stratigrafia 109: 77–98.

    Google Scholar 

  • Givulescu, R. 1999. Several considerations on Early Sarmatian flora from Bursuk, Republic of Moldavia. Feddes Repertorium 110: 475–479.

    Article  Google Scholar 

  • Givulescu, R. & N. Ţicleanu. 1986. Fossile Trapa-Früchte aus Rumänien. Dări de Seam ale Sedintelor, Institul de Geologie si Geofizica, 3. Paleontologie 70–71: 187–193.

  • Goeppert, H. R. 1852. Ueber die Braunkohlenfloral des nordőstlichen Deutschlands. Zeitschrift der Deutschen Geologischen Gesellschaft 4: 484–496.

    Google Scholar 

  • ——— 1855. Die tertiäre Flora von Schossnitz in Schlesien. Heyn’sche Buchhandlung, Görlitz. 52 pp + 26 pls.

    Google Scholar 

  • Golovneva, L. B. 1991. The new genus Palaeotrapa (Trapaceae?) and new species of Quereuxia from the Rarytkin series (Koryak Upland, the Maastrichtian-Danian). Botaničeskii Žurnal 76: 601–609. 2 pls.

    Google Scholar 

  • ——— 1994. Maastrichtian-Danian floras of Koryak Upland. Proceedings of Komarov Botanical Institute, Russian Academy of Sciences 13: 1–146.

    Google Scholar 

  • ——— 2000. Aquatic plant communities at the Cretaceous-Palaeogene boundary in north-eastern Russia. Acta Palaeobotanica 40: 139–151.

    Google Scholar 

  • Gottwald, H. P. J. 1994. Tertiäre Kieselhölzer aus dem Chindwinn-Bassin im nordwestlichen Myanmar (Birma). Documenta Naturae (Munich) 86: 1–90. 9 pls.

    Google Scholar 

  • Graham, A. 1976. Studies in neotropical paleobotany. II. The Miocene communities of Veracruz, Mexico. Annals of the Missouri Botanical Garden 63: 787–842.

    Article  Google Scholar 

  • ——— 1999. Late Cretaceous and Cenozoic history of North American vegetation, north of Mexico. Oxford University Press, New York. 350 pp.

    Google Scholar 

  • ——— 2009. Fossil record of the Rubiaceae. Annals of the Missouri Botanical Garden 96: 90–108.

    Article  Google Scholar 

  • ——— 2010a. Late Cretaceous and Cenozoic History of Latin American Vegetation and Terrestrial Environments. Missouri Botanical Garden Press, Saint Louis, Missouri. 617 pp.

    Google Scholar 

  • ——— & S. A. Graham. 1971a. The geologic history of the Lythraceae. Brittonia 23: 335–346.

    Article  Google Scholar 

  • ———, J. Nowicke, J. J. Skvarla, S. A. Graham, V. Patel & S. Lee. 1985. Palynology and systematics of the Lythraceae. I. Introduction and genera Adenaria through Ginoria. American Journal of Botany 72: 1012–1031.

    Article  Google Scholar 

  • ———, J. W. Nowicke, J. J. Skvarla, S. A. Graham, V. Patel & S. Lee. 1987. Palynology and systematics of the Lythraceae. II. Genera Haitia through Peplis. American Journal of Botany 74: 829–850.

    Article  Google Scholar 

  • ———, S. A. Graham, J. W. Nowicke, V. Patel & S. Lee. 1990. Palynology and systematics of the Lythraceae. III. Genera Physocalymma through Woodfordia, addenda, and conclusions. American Journal of Botany 77: 159–177.

    Article  Google Scholar 

  • Graham, S. A. 1988. Revision of Cuphea section Heterodon (Lythraceae). Systematic Botany Monographs 20: 1–168.

    Article  Google Scholar 

  • ——— 1995. Systematics of Woodfordia (Lythraceae). Systematic Botany 20: 482–502.

    Article  Google Scholar 

  • ——— 1998a. Relationships among autogamous species of Cuphea section Brachyandra (Lythraceae). Acta Botanica Brasilica 12: 203–214.

    Article  Google Scholar 

  • ——— 1998b. Revision of Cuphea section Diploptychia (Lythraceae). Systematic Botany Monographs 53: 1–96.

    Article  Google Scholar 

  • ——— 2007. Lythraceae. pp 226–246. In: K. Kubitzki (ed). The Families and Genera of Vascular Plants, Vol. IX. Springer, Berlin.

    Google Scholar 

  • ——— 2010b. Revision of the Caribbean genus Ginoria (Lythraceae), including Haitia from Hispaniola. Annals of the Missouri Botanical Garden 97: 34–90.

    Article  Google Scholar 

  • ——— & K. Gandhi. 2013. Nomenclatural changes resulting from the transfer of Nesaea and Hionanthera to Ammannia (Lythraceae). Harvard Papers in Botany 18: (in press).

  • ——— & A. Graham. 1971b. Palynology and systematics of Cuphea (Lythraceae). II. Pollen morphology and infrageneric classification. American Journal of Botany 58: 844–857.

    Article  Google Scholar 

  • ———, J. V. Crisci & P. C. Hoch. 1993. Cladistic analysis of the Lythraceae sensu lato based on morphological characters. Botanical Journal of the Linnean Society 113: 1–33.

    Article  Google Scholar 

  • ———, M. Diazgranados & J. C. Barber. 2011. Relationships among the confounding genera Ammannia, Hionanthera, Nesaea, and Rotala (Lythraceae). Botanical Journal of the Linnean Society 166: 1–19.

    Article  Google Scholar 

  • ———, J. Hall, K. Sytsma & S.-H. Shi. 2005. Phylogenetic analysis of the Lythraceae based on four gene regions and morphology. International Journal of Plant Sciences 166: 995–1017.

    Article  CAS  Google Scholar 

  • Gregor, H.-J. 1978. Die miozänen Frucht-und Samen-Floren der Oberpfälzer Braunkohle. I. Funde aus den sandigen Zwischenmitteln. Palaeontographica Abteilung B 167: 58–60.

    Google Scholar 

  • ——— 1980a. Die miozänen Frucht-und Samen-Floren der Oberpfälzer Braunkohle. II. Funde aus den Kohlen und Tonigen zwischenmitteln. Palaeontographica Abteilung B 174: 7–94.

    Google Scholar 

  • ——— 1980b. Trapa zapfei Berger aus dem Untermiozän von Langau bei Geras (NŐ.) – eine Hydrocharitacee. Annalen des Naturhistorischen Museums in Wien (series B) 83: 105–118.

    Google Scholar 

  • ——— 1982a. Fruktifikationen der Gattung Hemitrapa Miki (Trapellaceae) in den Ablagerungen der Oberen Süsswasser-Molasse Bayerns (mit Bemerkungen zu den fossilen vorkommen Eurasiens). Feddes Repertorium 93: 351–362. pls. 13–15.

    Article  Google Scholar 

  • ——— 1982b. pp 278. Die jungtertiären Floren Süddeutschlands. Paläokarpologie, Phytostratigraphie, Paläoökologie, Paläoklimatologie. Verlag Enke, Stuttgart.

    Google Scholar 

  • ——— & J. Mehl. 1987. Pflanzenreste und ein Massenvorkommen von Nüssen der Trapa baasii nov. spec. im Plio-Pleistozän der Wetterauer Braunkohle. Documenta Naturae 36: 1–10.

    Google Scholar 

  • Grimsson, F., D. K. Ferguson & R. Zetter. 2012. Morphological trends in the fossil pollen of Decodon and the paleobiogeographic history of the genus. International Journal of Plant Sciences 173: 297–317.

    Article  Google Scholar 

  • ———, R. Zetter & C.-C. Hofmann. 2011. Lythrum and Peplis from the late Cretaceous and Cenozoic of North America and Eurasia: New evidence suggesting early diversification within the Lythraceae. American Journal of Botany 98: 1801–1815.

    Article  PubMed  Google Scholar 

  • Gruas-Cavagnetto, C., Y. Tambareau & J. Villatte. 1988. Données paléoécologiques nouvelles sur le Thanétien et l’Ilerdien de I’Ilerdien de l’avant-pays pyrénéen et de la Montagne Noire. Institut français de Pondichéry, travaux de la section des sciences et techniques 25: 219–235.

    Google Scholar 

  • Guan, X.-T., H.-P. Fan, Z.-C. Song & Y.-H. Zheng. 1989. Researches on late Cenozoic Palynology of the Bohai Sea. Nanjing University Press, Nanjing. 26 pp.

    Google Scholar 

  • Guleria, J.S. 1989 [1990]. Fossil dicotyledonous woods from Bikaner, Rajasthan, India. Geophytology 19: 182–188 + 2 pls.

  • Guleria, J. S. 1991. On the occurrence of carbonised woods resembling Terminalia and Sonneratia in Palaeogene deposits of Gujarat, western India. Palaeobotanist 39: 1–8.

    Google Scholar 

  • ——— 1992. Neogene vegetation of peninsular India. Palaeobotanist 40: 285–311.

    Google Scholar 

  • ———, M. B. Bande & N. Awasthi. 1996. Fossil records and antiquity of some common plants in India. Rheedea 6: 13–27.

    Google Scholar 

  • Haggard, K. K. & B. H. Tiffney. 1997. The flora of the early Miocene Brandon lignite, Vermont, USA. VIII. Caldesia (Alismataceae). American Journal of Botany 84: 239–252.

    Article  CAS  PubMed  Google Scholar 

  • Handique, G. K. 1993. Stratigraphy, depositional environment and hydrocarbon potential of upper Assam Basin, India. Symposium of Biostratigraphy of Mainland Southeast Asia: Facies and Palaeontology, Chiang Mai, Thailand. Vol. 1: 151–169.

  • Hao, H., D. K. Ferugson, G.-P. Feng, A. Ablaev, Y.-F. Wang & C.-S. Li. 2010. Early Paleocene vegetation and climate in Jiayin, NE China. Climatic Change 99: 547–566.

    Article  CAS  Google Scholar 

  • Harsh, R. & B. D. Sharma. 1995. Petrified Tertiary woods from Bikaner (Rajasthan). Indian Journal of Earth Sciences 22: 104–109.

    Google Scholar 

  • Hedges, S. B. & S. Kumar. 2009. Discovering the timetree of life. pp 3–18. In: S. B. Hedges & S. Kumar (eds). The Timetree of Life. Oxford University Press, Oxford, England.

    Google Scholar 

  • Heer, O. 1869a. Flora fossilis Alaskana: Flora Fossilis Arctica. Kongelige Svenske Vetenskapsakademiens Handlingar 8: 1–41.

    Google Scholar 

  • ——— 1869b. Miocene baltische Flora. Beiträge zur Naturkunde Preussens 2: 1–104.

    Google Scholar 

  • ——— 1881. Contributions à la flore fossile du Portugal. Imprimerie de”Académie Royale des Sciences, Lisbon. 51 pp + 28 pls.

    Google Scholar 

  • Hesse, M. & R. Zetter. 2007. The fossil pollen record of Araceae. Plant Systematics and Evolution 263: 93–115.

    Article  Google Scholar 

  • Hickey, L. J. 2001. On the nomenclatural status of the morphogenera, Quereuxia and Trapago. Taxon 50: 1119–1124.

    Article  Google Scholar 

  • ——— & J. S. Wolfe. 1975. The basis of angiosperm phylogeny: Vegetative morphology. Annals of the Missouri Botanical Garden 62: 538–589.

    Article  Google Scholar 

  • Hofmann, E. 1952. Pflanzenreste aus dem phosphoritvorkommen von Prambachkirchen in Oberösterreich. Palaeontographica Abteilung B 92: 122–183. 13 pls.

    Google Scholar 

  • Hollick, A. 1930. The upper Cretaceous floras of Alaska. United States Geological Survey Professional Paper 159: 1–116. 86 pls.

    Google Scholar 

  • ——— 1936. The Tertiary Floras of Alaska. United States Geological Survey Professional Paper 182: 1–185. 122 pls. + map.

    Google Scholar 

  • Hooghiemstra, H. 1984. Vegetational and climatic history of the High Plain of Bogotá, Colombia: A continuous record of the last 3.5 million years. Dissertationes Botanicae, Band 79. J. Cramer, Vaduz, Liechtenstein. 368 pp.

  • Huang, Y.-L. & S.-H. Shi. 2002. Phylogenetics of Lythraceae sensu lato: A preliminary analysis based on chloroplast rbcL gene, psaA-ycf3 spacer, and nuclear rDNA internal transcribed spacer (ITS) sequences. International Journal of Plant Sciences 163: 215–225.

    Article  CAS  Google Scholar 

  • Huzioka, K. 1963. The Utto Flora of northern Honshu. Pp 153–216 + pls. 28–40. In: Chaney, R. (ed). Tertiary floras of Japan, I. Miocene floras. Collaborating Association to Commemorate the 80th Anniversary of the Geological Survey of Japan, 1963–1972. Association of Paleobotanical Research in Japan.

  • Iamandei, S., E. Iamandei & L. Tusa. 1998. A new fossil Lythraceous wood from the Badenian of Podeni, Trascāu Mts. Acta Horti Botanici Bucurestiensis 1998: 185–190.

    Google Scholar 

  • ———, ——— & T. Obada. 2005. Sarmatian petrified wood within “Bursuc Flora” (Moldova Rep.). Acta Palaeontologica Romaniae 5: 223–229.

    Google Scholar 

  • Ickert-Bond, S. M., C. Rydin & S. S. Renner. 2009. A fossil-calibrated relaxed clock for Ephedra indicates an Oliogene age for the divergence of Asian and New World clades and Miocene dispersal into South America. Journal of Systematics and Evolution 47: 444–456.

    Article  Google Scholar 

  • International Organization of Palaeobotany. 1997. Plant Fossil Record. Vers. 2.2, www.biologie.uni-hamburg.de/b-online/library/iopaleo/pfr.htm. Accessed Oct., 2011.

  • Isphording, W. C. & G. M. Lamb. 1971. Age and origin of the Citronelle Formation in Alabama. Bulletin of the Geological Society of America 82: 775–780.

    Article  Google Scholar 

  • Iwauchi, A. & Y. Hase. 1987. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan. Part 3. Journal of the Geological Society of Japan 93: 469–489.

    Article  Google Scholar 

  • Jacques, F. M. B., W. Wang, R. Ortiz, H.-L. Li, Z.-K. Zhou & Z.-D. Chen. 2011. Integrating fossils in a molecular-based phylogeny and testing them as calibration points for divergence time estimates in Menispermaceae. Journal of Systematics and Evolution 49: 25–49.

    Article  Google Scholar 

  • Jankovič, M. M. 1958. Oekologie, Verbreitung, Systematik und Geschichte der Gattung Trapa L. in Jugoslawien. Société Serbe de Biologie (Beograd) 2: 1–143.

    Google Scholar 

  • Jankovič, M. & N. Pantič. 1953. Fossilarten der Gattung Trapa L. in Nord-Ost-Bosnien. Annales Géologiques de la Péninsule Balkanique 21: 133–142.

    Google Scholar 

  • Jaramillo, C. A., G. Bayona, A. Pardo-Trujillo, M. Rueda, V. Torres, G. J. Harringon & G. Mora. 2007. The palynology of the Cerrejón Formation (upper Paleocene) of northern Colombia. Palynology 31: 153–189.

    Google Scholar 

  • Jarzen, D. M. & D. L. Dilcher. 2006. Middle Eocene terrestrial palynomorphs from the Dolime Minerals and Gulf Hammock Quarries, Florida, U.S.A. Palynology 30: 89–110.

    Article  Google Scholar 

  • Jayaweera, D. M. A. 1967. The genus Duabanga. Journal of the Arnold Arboretum 48: 89–100.

    Google Scholar 

  • Jonsell, B. & T. Karlsson. (eds). 2010. Lythraceae. Flora Nordica 6: 79-85. Swedish Museum of Natual History, Stockholm

  • Kadoo, L. A. & P. D. Kolhe. 2002. A new capsular fruit Duabangocarpon deccanii from Inter-trappean bed of Mohgaon Kalan, Madhya Pradesh. Gondwana Geological Magazine 17: 39–46.

    Google Scholar 

  • Kapgate, D. K., N. N. Saxena & M. T. Sheikh. 2003. Report of a “Lythrocarpon mohgaonse gen. et sp. nov.” A hexalocular capsular fruit from the Deccan Intertrappean Beds of Mohgaonkalan, M. P. India. The Botanique 12: 108–112.

    Google Scholar 

  • Kapgate, D., N. Awasthi, S. R. Manchester & S. D. Chitaley. 2011. Inflorescences and flowers of Sahnipushpam Shukla from the Deccan Intertrappean beds of India. Acta Palaeobotanica 51: 207–227.

    Google Scholar 

  • Kataoka, H. & N. Miyoshi. 2002. Pollen morphology of Trapella sinensis Oliver (Trapellaceae). Japanese Journal of Palynology 48: 19–23.

  • Keating, R. 1984. Leaf histology and its contribution to relationships in the Myrtales. Annals of the Missouri Botanical Garden 71: 801–823.

    Article  Google Scholar 

  • Keller, G., T. Adatte, S. Bajpai, D. M. Mohabey, M. Widdowson, A. Khosla, R. Sharma, S. C. Khosla, B. Gertsch, D. Fleitmann & A. Sahni. 2009a. K-T transition in Deccan Traps of central India marks major marine seaway across India. Earth and Planetary Science Letters 282: 10–23.

    Article  CAS  Google Scholar 

  • ———, S. C. Khosla, R. Sharma, A. Khosla, S. Bajpai & T. Adatte. 2009b. Early Danian Planktic foraminifera from Cretaceous-Tertiary intertrappean beds at Jhilmili, Chhindward District, Madhya Pradesh, India. Journal of Foraminiferal Research 39: 40–55.

    Article  Google Scholar 

  • ———, A. Sahni & S. Bajpai. 2009c. Deccan volcanism, the KT mass extinction and dinosaurs. Journal of Biosciences 34: 709–728.

    Article  CAS  PubMed  Google Scholar 

  • Khan, A. M. 1974. Palynology of Neogene sediments from Papua (New Guinea) stratigraphic boundaries. Pollen et Spores 16: 265–284.

    Google Scholar 

  • Kim, S.-C., S. A. Graham & A. Graham. 1994. Palynology and pollen dimorphism in the genus Lagerstroemia (Lythraceae). Grana 33: 1–20.

    Article  CAS  Google Scholar 

  • Kirchheimer, F. 1957. Die Laubgewächse der Braunkohlenzeit. Wilhelm Knapp Verlag, Halle. 783 pp.

    Google Scholar 

  • Klaus, V. W. 1954. Bau und Form von Sporotrapoidites illingensis n. gen. et sp. sporomorpharum. Botaniska Notiser 1954: 114–131. 7 pls.

    Google Scholar 

  • Knowlton, F. H. 1894. A review of the fossil flora of Alaska, with descriptions of new species. Proceedings of the United States National Museum 17: 207–240. 1 pl.

    Article  Google Scholar 

  • ——— 1898a. The fossil plants of the Payette Formation. United States Geological Survey, 18th Annual Report, Part 3. pp 617–744.

  • ——— 1898b. A catalogue of the Cretaceous and Tertiary Plants of North America. Bulletin of the United States Geological Survey 152. 247 pp.

  • Koehne, E. 1903. Lythraceae. pp 1–326. In: A. Engler (ed). Das Pflanzenreich IV. 216. Wilhelm Engelmann, Leipzig, Germany.

    Google Scholar 

  • Kokate, P. S., E. V. Upadhye, & Bhadange. 2005. Chitaleypushpam heptaloculi sp. nov., a report of dicotyledonous flower from the Deccan Intertrappean Beds of Mohgaon kalan, M. P. India. International Conference on “Modern Trends in Plant Science with special reference to the role of Biodiversity in Conservation.” Amravati University, Amravati: 139 (Abstract).

  • Korhola, A. A. & M. J. Tikkanen. 1997. Evidence for a more recent occurrence of water chestnut (Trapa natans L.) in Finland and its palaeoenvironmental implications. The Holocene 7: 39–44.

    Article  Google Scholar 

  • Kornilova, V. S. 1960. Lower Miocene flora of Kushuka (Turgai Basin). Kazakh Academy of Sciences, Alma-Ata. [Nizhnemiotsenovaya flora Kushuka (Tyrguyskiy Progib). Akademii Nauk Kazakhskoy SSR, Alma-Ata.]

  • Kovar-Eder, J. & B. Meller. 2003. The plant assemblages from the main seam parting of the western sub-basin of Oberdorf, N Voitsberg, Styria, Austria (early Miocene). Courier Forschung-Institut Senckenberg 241: 281–311.

    Google Scholar 

  • ———, J. Schwarz & J. J. Wójcicki. 2002. The predominantly aquatic flora from Pellendorf, Lower Austria, late Miocene, Pannonian, a systematic study. Acta Palaeobotanica 42: 125–151.

    Google Scholar 

  • ———, J. J. Wójcicki & R. Zetter. 2005. Trapaceae from the late Miocene of Austria and the European context. Acta Palaeobotanica 45: 165–186.

    Google Scholar 

  • Kramer, K. 1974. Die Tertiären Hölzer Südost-Asiens (unter Ausschluss der Dipterocarpaceae). Palaeontographica Abteilung B 144: 45–181.

    Google Scholar 

  • Kryshtofovich, A. N. 1920. A new fossil palm and some other plants of the Tertiary flora of Japan. Journal of the Geological Society of Tokyo 27: 317–350.

    Google Scholar 

  • ——— 1956. Oligocene flora of the Ashutas Mountain in Kazakhstan. Annals of the Komarov Botanical Institute, Series 8. Paleobotany 1: 5–180.

    Google Scholar 

  • Kumar, A. 1981. Palynology of the Pitch Lake, Trinidad, West Indies. Pollen & Spores 23: 259–272.

    Google Scholar 

  • Kutuzkina, E. F. 1974. Some representatives of Mediterranean flora in the upper Sarmat of the Krasnodar District. Botaničeskij Žurnal 59: 251–260. pl. 2.

    Google Scholar 

  • Kvaček, Z. & J. Sakala. 1999. Twig with attached leaves, fruits and seeds of Decodon (Lythraceae) from the lower Miocene of northern Bohemia, and implications for the identification of detached leaves and seeds. Review of Palaeobotany and Palynology 107: 201–222.

    Article  Google Scholar 

  • ——— & V. Teodoridis. 2007. Tertiary macrofloras of the Bohemian Massif: A review with correlations within Boreal and Central Europe. Czech Geological Survey, Prague, Bulletin of Geosciences 82: 383–408.

    Google Scholar 

  • ———, M. Böhme, Z. Dvořák, M. Konzalová, K. Mach, J. Prokop & M. Rajchl. 2004. Early Miocene freshwater and swamp ecosystems of the Most Basin (northern Bohemia) with particular reference to the Bílina Mine section. Journal of the Czech Geological Society 49: 1–40.

    Google Scholar 

  • Lakhanpal, R. N. & R. Dayal. 1966. Lower Siwalik plants from near Jawalamukhi, Punjab. Current Science 35: 209–211.

    Google Scholar 

  • ——— & J. S. Guleria. 1981. Leaf-impressions from the Eocene of Kachchh, Western India. Palaeobotanist 28–29: 353–373.

    Google Scholar 

  • ———, ——— & N. Awasthi. 1984. The fossil floras of Kachchh. III. Tertiary megafossils. Palaeobotanist 33: 228–319.

    Google Scholar 

  • ———, U. Prakash & N. Awasthi. 1981. Some more dicotyledonous woods from the Tertiary of Deomali, Arunachal Pradesh, India. Palaeobotanist 27: 232–252.

    Google Scholar 

  • LaMotte, R. S. 1952. Catalogue of the Cenozoic plants of North America through 1950. Geological Society of America Memoir 51. 381 pp.

  • Lee, H.-H. & H.-H. Li. 1959. Trapa? microphylla Lesq., the first occurrence from the upper Cretaceous formation of China. Acta Palaeontologica Sinica 7: 33–40.

    Google Scholar 

  • Legoux, O. 1978. Quelques espèces de pollen caractéristiques du Neogène du Nigéria. Bulletin Centre Recherche Exploration Production Elf Aquitaine 2: 265–317.

    Google Scholar 

  • Lesquereux, L. 1878. Contributions to the fossil flora of the Western Territories. Part 2. The Tertiary Flora. Report of the United States Geological Survey of the Territories. Report 7. 366 pp.

  • ——— 1883. Contributions to the fossil flora of the Western Territories. Part 3. The Cretaceous and Tertiary Floras. Report of the United States Geological Survey of the Territories. Report 8. 283 pp. + 59 pls.

  • Lézine, A. M. 1988. New pollen data from the Sahel, Senegal. Review of Palaeobotany and Palynology 55: 141–154.

    Article  Google Scholar 

  • Li, J., D. J. Batten & Z. Yiyong. 2008. Palynological indications of environmental changes during the Late Cretaceous-Eocene on the southern continental margin of Laurasia, Xizang (Tibet). Palaeogeography, Palaeoclimatology, Palaeoecology 265: 78–86.

    Article  Google Scholar 

  • Liang, M.-M. 2004. Palynology, palaeoecology and palaeoclimate of the Miocene Shanwang Basin, Shandong Province, eastern China. Acta Palaeobotanica Supplement 5: 3–95.

    Google Scholar 

  • Lin, S.-F., P.-M. Liew & T.-H. Lai. 2004. Late Holocene pollen sequence of the Ilan Plain, northeastern Taiwan, and its environmental and climatic implications. TAO 15: 221–237.

    Google Scholar 

  • Little, S. A. & R. A. Stockey. 2003. Vegetative growth of Decodon allenbyensis (Lythraceae) from the middle Eocene Princeton Chert with anatomical comparisons to Decodon verticillatus. International Journal of Plant Sciences 164: 453–469.

    Article  Google Scholar 

  • ——— & ———. 2006. Morphogenesis of the specialized peridermal tissues in Decodon allenbyensis from the middle Eocene Princeton Chert. IAWA Journal 27: 73–87.

    Google Scholar 

  • ———, ——— & R. C. Keating. 2004. Duabanga-like leaves from the middle Eocene Princeton Chert and comparative leaf histology of Lythraceae sensu lato. American Journal of Botany 91: 1126–1139.

    Article  PubMed  Google Scholar 

  • Liu, G. & R. Yang. 1999. Pollen assemblages of the late Eocene Nadu Formation from the Bose Basin of Guangxi, southern China. Palynology 23: 97–114.

    Article  Google Scholar 

  • Liu, Y.-S., R. Zetter, D. K. Ferguson & C. Zou. 2008. Lagerstroemia (Lythraceae) pollen from the Miocene of eastern China. Grana 47: 262–271.

    Article  Google Scholar 

  • Lorente, M. A. 1986. Palynology and palynofacies of the Upper Tertiary in Venezuela. Dissertationes Botanicae, Band 99. J. Cramer, Berlin. 222 pp.

  • Lourteig, A. 1985. Revision del genero Lafoensia Vandelli (Litraceas). Memoria de la Sociedad de Ciencias Naturales La Salle, Caracas 45: 115–157.

    Google Scholar 

  • ——— 1986. Revisión del genero Crenea Aublet (Litraceas). Caldasia 15: 121–142.

    Google Scholar 

  • Louvet, P. 1970. Sonneratioxylon aubrevillei, n. sp. Compte-rendu de l’Academie Paris 270, séries D: 2268-2271.

  • Macedo, R. B., P. A. de Souza & S. G. Bauermann. 2009. Catálogo de pólens, esporos e demais palinomorfos em sedimentos holocênicos de Santo Antônio da Patrulha, Rio Grande do Sul, Brasil. Iheringia 64: 43–78.

    Google Scholar 

  • MacGinitie, H. D. 1937. The flora of the Weaverville beds of Trinity County, California, with descriptions of the plant-bearing beds. Carnegie Institution of Washington Publication 465-III: 84–151.

    Google Scholar 

  • Machin, J. 1971. Plant microfossils from Tertiary deposits of the Isle of Wright. New Phytologist 70: 851–872.

    Article  Google Scholar 

  • Mädler, K. 1939. Die pliozäne Flora von Frankfurt am Main. Abhandlngen Senckenbergischen Naturforschenden Gesellschaft 446: 1–202. 13 pls.

    Google Scholar 

  • Magallón, S. 2010. Using fossils to break long branches in molecular dating: A comparison of relaxed clocks applied to the origin of angiosperms. Systematic Biology 59: 384–399.

    Article  PubMed  Google Scholar 

  • Mahabale, T. S. & J. V. Deshpande. 1957 [1959]. The genus Sonneratia and its fossil allies. Palaeobotanist 6: 51–64 +4 pls.

  • Mai, D. H. 1960. Űber neue Früchte und Samen aus dem deutschen Tertiär. Paläontologische Zeitschrift 34: 73–90.

    Google Scholar 

  • ——— 1964. Die Mastixioideen-Floren in Tertiär der Oberlausitz. Palaeontographica Abteilung B 2: 1–192.

    Google Scholar 

  • ——— 1971. Űber fossile Lauraceae und Theaceae in Mitteleuropa. Feddes Repertorium, Beiheft 82: 313–341.

    Article  Google Scholar 

  • ——— 1985. Entwicklung der Wasser-und Sumpfpflanzen-Gesellschaften Europas von der Kreide bis ins Quartär. Flora 176: 449–511.

    Google Scholar 

  • ——— 1987. Neue Arten nach Früchten und Samen aus dem Tertiär von Nordwestsachsen und der Lausitz. Feddes Repertorium 98: 105–126.

    Google Scholar 

  • ——— 1995. Tertiäre Vegetationsgeschichte Europas: Methoden und Ergebnisse. Gustav Fischer Verlag, Jena. 691 pp.

    Google Scholar 

  • ——— 1996. Zwei neue Arten von Samen aus dem deutschen Jungtertiär. Feddes Repertorium 107: 299–303.

    Article  Google Scholar 

  • ——— 1998. Contribution to the flora of the middle Oligocene Calau Beds in Brandenburg, Germany. Review of Palaeobotany and Palynology 101: 430–70.

    Article  Google Scholar 

  • ——— 2001. Die mittelmiozänen und obermiozänen Floren aus der Meuroer und Raunoer Folge in der Lausitz. Teil III. Fundstellen und Paläobiologie. Palaeontographica Abteilung B 258: 1–85.

    Google Scholar 

  • ——— & H. Walther. 1978. Die Floren der Haselbacher Serie im Weisselster-Becken (Bezirk, Leipzig, DDR). Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden 28: 1–200. 50 pls.

    Google Scholar 

  • ——— & ———. 1985. Die obereozänen floren des Weisselster-Beckens und seiner Randgebiete. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden 33: 1–260.

    Google Scholar 

  • ——— & ———. 1991. Die oligozänen und untermiozänen Floren Nordwest-Sachsens und des Bitterfelder Raumes. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden 38: 1–230. 48 pls.

    Google Scholar 

  • Makinouchi, T. 1985. Some problems in the generation stage of the “Second Setouchi Sedimentary Province”, with special reference to the sedimentary basin of Lake Tokai. The Association for the Geological Collaboration in Japan, Monograph 29: 53–64.

    Google Scholar 

  • Manchester, S. R. 1994. Fruits and seeds of the middle Eocene Nut Beds Flora, Clarno Formation, Oregon. Palaeontographica Americana 58: 1–205.

    Google Scholar 

  • ——— & D. Kapgate. 2011. Myrtalean flowers and fruits from the K-T boundary of Madhya Pradesh, India. 28th Mid-Continent Paleobotany Colloquim, May 20–22. North Carolina State University, Raleigh, North Carolina. Abstract. http://www4.ncsu.edu/~xylem/mpc.ab.text.htmL.

  • Manchester, S. R., D. L. Dilcher & S. L. Wing. 1998. Attached leaves and fruits of myrtaceous affinity from the middle Eocene of Colorado. Review of Palaeobotany and Palynology 102: 153–163.

    Google Scholar 

  • Martínez-Millán, M. 2010. Fossil record and age of the Asteridae. Botanical Review 76: 83–135.

    Article  Google Scholar 

  • Massalongo, A. B. 1858. Formationis tertiariae agri. Atti dell’I. R. Istituto Veneto di Scienze, Lettere ed Arti 3rd Ser., 3: 768–769.

  • Matsumoto, M., A. Momohara, T. A. Ohsawa & Y. Shoya. 1997. Permineralized Decodon (Lythraceae) seeds from the middle Miocene of Hokkaido, Japan with reference to the biogeographic history of the genus. Japan Journal of Historical Botany 5: 53–65.

    Google Scholar 

  • Matthews, J. V., Jr. & L. E. Ovenden. 1990. Late Tertiary plant macrofossils from localities in Arctic/Subarctic North America: A review of the data. Arctic 43: 364–392.

    Google Scholar 

  • Mayo, S. J., J. Bogner & P. C. Boyce. 1997. The genera of Araceae. The Trustees, Royal Botanic Gardens, Kew. xii + 370 pp.

    Google Scholar 

  • McCartan, L., B. H. Tiffney, J. A. Wolfe, T. A. Ager, S. L. Wing, L. A. Sirkin, L. W. Ward & J. Brooks. 1990. Late Tertiary floral assemblage from upland gravel deposits of the southern Maryland Coastal Plain. Geology 18: 311–314.

    Article  Google Scholar 

  • McClammer, J. U., Jr. & D. R. Crabtree. 1989. Post-Barremian (Early Cretaceous) to Paleocene paleobotanical collections in the western interior of North America. Review of Palaeobotany and Palynology 57: 221–232.

    Article  Google Scholar 

  • McElwain, J. C. & S. W. Punyasena. 2007. Mass extinction events and the plant fossil record. Trends in Ecology and Evolution 22: 548–557.

    Article  PubMed  Google Scholar 

  • McIver, E. E. & J. F. Basinger. 1993. Flora of the Ravenscrag Formation (Paleocene), southwestern Saskatchewan, Canada. Palaeontographica Canadiana 10: 1–167.

    Google Scholar 

  • ——— & ———. 1999. Early Tertiary floral evolution in the Canadian High Arctic. Annals of the Missouri Botanical Garden 86: 523–545.

    Article  Google Scholar 

  • Mehrotra, R. C. 1988. Fossil wood of Sonneratia from the Deccan Intertrappean Beds of Mandla District, Madhya Pradesh. Geophytology 18: 129–134.

    Google Scholar 

  • ——— 2003. Status of plant megafossils during the early Paleogene in India. In: Wing, S. L., P. D. Gingerich, B. Schmitz, & E. Thomas (eds). Causes and Consequences of Globally Warm Climates in the Early Paleogene. Geological Society of America Special Paper 369: 413–423. Boulder, CO, USA.

  • Mehrotra, R. C. & B. D. Mandaokar. 1998. Fossil wood resembling Duabanga from Tipam Sandstone of Makum Coalfield, Assam. Geophytology 26: 99–101.

    Google Scholar 

  • ———, N. Pande & Ralimongla. 2004. Two fossil woods from Miocene sediments of Changki, Mokokchung district, Nagaland. Geophytology 32: 79–82.

    Google Scholar 

  • ———, X.-Q. Liu, C.-S. Li, Y.-F. Wang & M. S. Chauhan. 2005. Comparison of the Tertiary flora of southwest China and northeast India and its significance in the antiquity of the modern Himalayan flora. Review of Palaeobotany and Palynology 135: 145–163.

    Article  Google Scholar 

  • Meller, B. 1998a. Plant association samples from the Karpathian of the Korneuburg Basin (lower Miocene, Lower Austria): A contribution to the vegetation reconstruction. Beiträge zur Palaeontologie 23: 85–121.

    Google Scholar 

  • ——— 1998b. Systematisch-taxonomische Untersuchungen von Karpo-Taphocoenosen des Köflach-Voitsberger Braunkohlenrevieres (Steiermark, Ősterreich; Untermiozän) und ihre paläoökologische Bedeutung. Jahrbuch der Geologischen Bundesanstalt, Band 140: 497–655.

    Google Scholar 

  • ——— & P. F. van Bergen. 2003. The problematic systematic position of Ceratostratiotes Gregor (Hydrocharitaceae?) – morphological, anatomical and biochemical comparison with Stratiotes L. Plant Systematics and Evolution. 236: 125–150.

    Article  Google Scholar 

  • Menke, B. 1976. Pliozäne und ältestquartäre Sporen- und Pollenflora von Schleswig-Holstein. Geologische Jahrbuch A 32: 3–197.

    Google Scholar 

  • Menzel, P. 1913. Beitrag zur Flora der Niederrheinischen Braunkohlenformation. Jahrbuch der Königlichen Preussischen Geologischen Landesanstalt N. F. 34: 1–98.

    Google Scholar 

  • ——— 1933. Neues zur Tertiärflora der Niederlausitz. Arbeiten aus dem Institut fur Paläobotanik und Petrographie der Brennsteine 3: 1–43.

    Google Scholar 

  • Meyer, H. W. & S. R. Manchester. 1997. pp 1–195. The Oligocene Bridge Creek Flora of the John Day Formation, Oregon. University of California Publications in Geological Science, vol. 141. University of California Press, Berkeley.

    Google Scholar 

  • Miki, S. 1937. Plant fossils from the Stegodon beds and the Elephas beds near Akashi. Japanese Journal of Botany 8: 303–341. pl. 8, 9.

    Google Scholar 

  • ——— 1938. On the change of flora of Japan since the upper Pliocene and the floral composition at the present. Japanese Journal of Botany 9: 213–251. 2 pls.

    Google Scholar 

  • ——— 1941. On the change of flora in Eastern Asia since Tertiary period. (1). The clay or lignite beds flora in Japan with special reference to the Pinus trifolia beds in Central Hondo. Japanese Journal of Botany 11: 237–303. pls. 4-7.

    Google Scholar 

  • ——— 1948. For the systematic position of Hemitrapa and some fossil Trapa. Botanical Magazine, Tokyo 61: 74–77.

    Google Scholar 

  • ——— 1952a. On the systematic position of Hemitrapa and some other fossil Trapa. Palaeobotanist 1: 346–350.

    Google Scholar 

  • ——— 1952b. Trapa of Japan with special reference to its remains. Journal of the Institute of Polytechnics, Osaka City University, Series D 3: 1–29.

    Google Scholar 

  • ——— 1959. Evolution of Trapa from ancestral Lythrum through Hemitrapa. Proceedings of the Imperial Academy of Japan 35: 289–294.

    Google Scholar 

  • ——— 1961. Aquatic floral remains in Japan. Journal of Biology, Osaka City University 12: 91–121. 3 pls.

    Google Scholar 

  • ——— 1967. Morphology and genus relation of fossil Eotrapa. Bulletin, Mukogawa Women’s University 15: 267–272.

    Google Scholar 

  • ——— 1968. Morphological and evolutional relationship between Hemitrapa and Trapa. Bulletin. Mukugowa Women’s University 16: 281–286.

    Google Scholar 

  • Miotk-Szpiganowicz, G. & M. Galka. 2009. A new site of Holocene fossil Trapa natans L. at the Kaszuby Lakland (Poland). Limnological Review 9: 165–173.

    Google Scholar 

  • Miyoshi, N., T. Fujiki & Y. Morita. 1999. Palynology of a 250-m core from Lake Biwa: A 430,000-year record of glacial-interglacial vegetation change in Japan. Review of Palaeobotany and Palynology 104: 267–283.

    Article  Google Scholar 

  • Mohr, B. 1983. Nachweis von Pollen der Gattung Hemitrapa Miki (Trapaceae) aus mittelmiozänen Schichten von Gallenbach bei Dasing (LKrs. Aichach-Friedberg). Berichte des Naturwissenschaftlichen Vereins für Schwaben 87: 69–72.

    Google Scholar 

  • Mohr, B. A. R. & C. T. Gee. 1990. Sporotrapoidites erdtmanii (Nagy) Nagy, a trapaceous pollen species pertaining to the Oligocene to Pliocene genus Hemitrapa Miki. Grana 29: 285–293.

    Article  Google Scholar 

  • Moiseeva, M. G. 2010. Latest Cretaceous Koryak Flora of north-eastern Russia: Taxonomy, age, plant communities and comparison with Alaskan floras. Abstract. 6 July 2010. http://flmnh.ufl.edu/paleobotany/meeing/abstract.htm. Accessed 7 May 2011.

  • Momohara, A. 1994. Floral and paleoenvironmental history from the late Pliocene to middle Pleistocene in and around central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 108: 281–293.

    Article  Google Scholar 

  • ——— 1997. Cenozoic history of evergreen broad-leaved forest in Japan. Natural History Research, Special Issue 4: 141–156.

    Google Scholar 

  • ———, K. Saiki & M. Okuda. 2006. A plant macrofossil assemblage from the Kiyokawa Formation in the Shimosa Group and reconstruction of the palaeoclimate based on it. Quaternary Research (Tokyo) 45: 211–216.

    Article  Google Scholar 

  • Moncada F., M., C. E. Hernández F., & M. Cabrera C. 1990-1991. Análisis polínico de sedimentos marinos del occidente de La Isla de La Juventud (Cuba). Acta Botanica Hungarica 36: 145--161.

  • Morley, R. J. 2000. Origin and evolution of tropical rain forests. John Wiley & Sons, LTD, Chichester, England. xii + 362 pp.

    Google Scholar 

  • Morris, J. A. 2007. A molecular phylogeny of the Lythraceae and inference of the evolution of heterostyly. Unpublished Ph.D. Dissertation, Kent State University, Kent, Ohio, USA. 108 pp.

  • Muller, J. 1968. Palynology of the Pedawan and Plateau sandstone Formations (Cretaceous-Eocene) in Sarawak, Malaysia. Micropaleontology 14: 1–37. 5 pls.

    Article  Google Scholar 

  • ——— 1969. A palynological study of the genus Sonneratia (Sonneratiaceae). Pollen et Spores 11: 223–298.

    Google Scholar 

  • ——— 1978. New observations on pollen morphology and fossil distribution of the genus Sonneratia (Sonneratiaceae). Review of Palaeobotany and Palynology 26: 277–300.

    Article  Google Scholar 

  • ——— 1981a. Fossil pollen records of extant angiosperms. The Botanical Review 47: 1–142.

    Article  Google Scholar 

  • ——— 1981b. Exine architecture and function in some Lythraceae and Sonneratiaceae. Review of Palaeobotany and Palynology 35: 93–123.

    Article  Google Scholar 

  • ——— 1984. Significance of fossil pollen for angiosperm history. Annals of the Missouri Botanical Garden 71: 419–443.

    Article  Google Scholar 

  • Nagy, E. 1979. New tropical elements from the Hungarian Neogene. Grana 18: 183–188.

    Article  Google Scholar 

  • Nathorst, A. G. 1888. Zur fossilen Flora Japans. Palaeontologishe Abhandlungen. 4: 20–12.

    Google Scholar 

  • Navale, G. K. B. 1956. Sapindoxylon indicum sp. nov., a new fossil wood from the Tertiary Beds of South India. Palaeobotanist 5: 73–77.

    Google Scholar 

  • Newberry, J. S. 1861. Geological Report, fossil plants. pp 129–132. In: J. C. Ives (ed). Report upon the Colorado River of the west explored in 1857 and 1858 by Lieutenant Joseph C. Ives. Corps of Topographical Engineers, Office of Explorations and Surveys. GPO, Washington, D.C.

    Google Scholar 

  • Nikitin, P. A. 1929. The systematic position of the fossil genus Diclidocarya E. M. Reid. Journal of Botany 67: 33–38.

    Google Scholar 

  • ——— 1965. Die aquitanische Samenflora von Lagernovo Sad. Univ.-Stadt Tomsk, w. w. Kuibishev. Tomsk Universität, Tomsk. 119 pp + 23 pls.

    Google Scholar 

  • Ogg, J. G., G. Ogg & F. M. Gradstein. 2008. A concise geological time scale. Cambridge University Press, Cambridge, England. 177 pp.

    Google Scholar 

  • Ohashi, H. 1999. Lythraceae. pp 204–208. In: K. Iwatsuki, D. E. Boufford, & H. Ohba (eds). Flora of Japan IIc. Kodansha Ltd., Tokyo.

    Google Scholar 

  • Okutsu, H. 1939. Fossil Trapas in Japan with the description of 2 new species. Geological Society of Japan 46: 328–329.

    Google Scholar 

  • Opravil, E. 1966. Trapa minuta nova spec. from the Czechoslovak Pleistocene. Preslia (Praha) 38: 53–56. pl. 2, 3.

    Google Scholar 

  • Palacios, C. R. & J. Rzedowski. 1993. Estudio palinologico de las floras fosiles del Mioceno inferior y principios del Mioceno medio de la region de Pichucalco, Chiapas, Mexico. Acta Botánica Mexicana 24: 1–96.

    Google Scholar 

  • Palamarev, E. 1989. Paleobotanical evidences of the Tertiary history and origin of the Mediterranean sclerophyll dendroflora. Plant Systematics and Evolution 162: 93–107.

    Article  Google Scholar 

  • Pande, K. 2002. Age and duration of the Deccan Traps, India: A review of radiometric and paleomagnetic constraints. Proceedings of the Indian Academy of Science (Earth Planetary Science) 111: 115–123.

    CAS  Google Scholar 

  • Paradkar, S. A. 1973. Chitaleypushpam mohgaoense gen. et sp. nov. from the Deccan Intertrappean Beds of India. Palaeobotanist 20: 334–338. pl. 1,2.

    Google Scholar 

  • ——— & S. P. Patki. 1987. Trapa mohgaoensis- a new petrified dicotyledonous fruit from the Deccan Intertrappean Beds of Mohgaonkalan, Madhya Pradesh, India. Geophytology 17: 21–27.

    Google Scholar 

  • Parks, W. S. 1975. Stratigraphy of the Paleocene and lower part of the Eocene in western Tennessee. Tennessee Department of Conservation, Nashville, Division of Geology Bulletin 75: B1–B55.

    Google Scholar 

  • Patel, V. C., J. J. Skvarla & P. H. Raven. 1984. Pollen characters in relation to the delimitation of Myrtales. Annals of the Missouri Botanical Garden 71: 858–969.

    Article  Google Scholar 

  • Pearson, R. S. & H. P. Brown. 1932. Commercial Timbers of India. 2 Vol. Government of India Central Publication Branch, Calcutta. 1108 pp.

    Google Scholar 

  • Penhallow, D. P. 1907. A report on fossil plants from the International Boundary Survey for 1903--1905, collected by Dr. R. A. Daly. Transactions of the Royal Society of Canada, Series 3 1: 287–351.

    Google Scholar 

  • ——— 1908. Report on Tertiary plants of British Columbia collected by Lawrence M. Lambe in 1906 together with a discussion of previously recorded Tertiary floras. Canada Department of Mines, Geological Survey Branch, No. 1013, Ottawa, Canada. 167 pp.

  • Penny, D. 2001. A 40,000 year palynological record from north-east Thailand; implications for biogeography and palaeo-environmental reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 171: 97–128.

    Article  Google Scholar 

  • Peppe, D. J. 2010. Megafloral change in the early and middle Paleocene in the Williston Basin, North Dakota, USA. Palaeogeography, Palaeoclimtology, Palaeoecology 298: 224–234.

    Article  Google Scholar 

  • Pigg, K. B. & M. L. DeVore. 2005. Shirleya grahamae gen. et sp. nov. (Lythraceae), Lagerstroemia-like fruits from the middle Miocene Yakima Canyon flora, central Washington State, USA. American Journal of Botany 92: 242–251.

    Article  PubMed  Google Scholar 

  • ——— & W. Wehr. 2002. Tertiary flowers, fruits, and seeds of Washington State and adjacent areas – Part III. Washington Geology 30: 3–16.

    Google Scholar 

  • Plaziat, J.-C., C. Cavagnetto, J.-C. Koeniguer & F. Baltzer. 2001. History and biogeography of the mangrove ecosystem, based on a critical reassessment of the paleontological record. Wetlands Ecology and Management 9: 161–179.

    Article  Google Scholar 

  • Popov, P. A. & G. K. Kondratev. 1958. Difficulties in identifying fossil and modern Trapa pollen from Tertiary localities of Europe and Asiatic USSR. Doklady Akademii Nauk SSSR 118: 819–822.

    Google Scholar 

  • Prakash, U. 1955 [1956]. On the structure and affinities of Sahnipushpam glandulosum sp. nov. from the Deccan Intertrappean series. Palaeobotanist 4: 91–100 + pl. 1, 2.

  • ——— 1956. Studies in the Deccan Intertrappean flora - 2. Further observations on Dryoxylon mohgaoense Rode. Palaeobotanist 5: 104–108. pl. 1, 2.

    Google Scholar 

  • ——— 1960. A survey of the Deccan Intertrappean Flora of India. Journal of Paleontology 34: 1027–1040.

    Google Scholar 

  • ——— 1965a. Fossil wood of Lagerstroemia from the Tertiary of Burma. Current Science 34: 484–485.

    Google Scholar 

  • ——— 1965b. Some fossil dicotyledonous woods from the Tertiary of eastern India. Palaeobotanist 14: 223–234.

  • ——— 1972 [1973]. Fossil woods from the Tertiary of Burma, Palaeobotanist 20: 48–70 + 8 pls.

  • Prakash, U. & N. Awasthi. 1970. Fossil woods from the Tertiary of eastern India. 1. Palaeobotanist 18: 32–44. 4 pls.

    Google Scholar 

  • ——— & M. B. Bande. 1980. Some more fossil woods from the Tertiary of Burma. Palaeobotanist 26: 261–278.

    Google Scholar 

  • ——— & R. K. Jain. 1963 [1964]. Further observations on Sahnipushpam Shukla. Palaeobotanist 12: 128–138 +3 pls.

  • Prakash, U. & P. P. Tripathi. 1970. Fossil woods from the Tertiary of Hailakandi, Assam. Palaeobotanist 18: 20–31.

    Google Scholar 

  • ———, N. Z. Du & P. P. Tripathi. 1992. Fossil woods from Tipam sandstones of Northeast India with remarks on palaeoenvironment of the region during the middle Miocene. Biological Memoirs 18: 1–26.

    Google Scholar 

  • ———, L. Vaidyanathan & P. P. Tripathi. 1994. Plant remains from the Tipam sandstones of Northeast India with remarks on the palaeoecology of the region during the Miocene. Palaeontographica Abteilung B 231: 113–146.

    Google Scholar 

  • Prasad, M. 1993. Siwalik (Middle Miocene) woods from the Kalagarh area in the Himalayan foot hills and their bearing on palaeoclimate and phytogeography. Review of Palaeobotany and Palynology 76: 49–82.

    Article  Google Scholar 

  • ——— 1994a. Plant megafossils from the Siwalik sediments of Koilabas, central Himalaya, Nepal and their impact on palaeoenvironment. Palaeobotanist 42: 126–156.

    Google Scholar 

  • ——— 1994b. Siwalik (middle Miocene) leaf impressions from the foot hills of the Himalayas, India. Tertiary Research 15: 53–90.

    Google Scholar 

  • ——— 1994c. Siwalik (middle Miocene) woods from the Kalagarh area in the Himalayan foot hils and their bearing on palaeoclimate and phytogeography. Review of Palaeobotany and Palynolology 76: 49–82.

    Article  Google Scholar 

  • ———, R. Ghosh & P. P. Tripathi. 2004. Floristics and climate during Siwalik (middle Miocene) near Kathgodam in the Himalayan foot hills of Uttaranchal, India. Journal of the Palaeontological Society of India 49: 35–93.

    Google Scholar 

  • Privé-Gill, C. 1981. Quelques bois de dicotylédones Éocènes (Lutétien Supérieur) du Bassin de Paris. Palaeontographica Abteilung B 177: 119–135. 4 pls.

    Google Scholar 

  • Puri, G. S. 1943. The occurrence of Woodfordia fruticosa (Linn.) S. Kurz in the Karewa deposits of Kashmir, with remarks on changes of altitude and climate during the Pleistocene. Journal of the Indian Botanical Society 22: 125–131. 1 pl.

    Google Scholar 

  • ——— 1951. Fossil fruits of Trapa and remains of other fresh water plants from the Pleistocene of Kashmir. Journal of the Indian Botanical Society 30: 113–121.

    Google Scholar 

  • Quental, T. B. & C. R. Marshall. 2010. Diversity dynamics: Molecular phylogenies need the fossil record. Trends in Ecology and Evolution 25: 434–441.

    Article  PubMed  Google Scholar 

  • Ramanujam, C. J. K. 1956 [1957]. On the occurrence of fossil wood of Sonneratia: Sonneratioxylon dakshinense sp. nov. from the Tertiary of South Arcot District, Madras. Palaeobotanist 5: 78–81

  • Ramírez-Arriaga, E., E. Martínez-Hernández, H. Flores-Olvera, H. Ochotorena & M. B. Prámparo. 2008. Correlation of the late Eocene-early Oligocene Izúcar de Matamoros evaporites (Cuayuca Formation) in Mexico based on parsimony analysis of endemicity. Palynology 32: 231–252.

    Google Scholar 

  • Rao, J. S. R. K. & C. G. K. Ramanujam. 1966. On the occurrence of a fossil dicot wood from Dudukur near Rajahmundry. Current Science 35: 257–259.

    Google Scholar 

  • ——— & ———. 1975. A palynological approach to the study of Quilon beds of Kerala State in South India. Current Science 44: 730–732.

    Google Scholar 

  • Rao, R. V., B. Sharma, L. Chauhan, R. V. Rao, B. Sharma, L. Chauhan & R. Dayal. 1987. Reinvestigations of the wood anatomy of Duabanga and Sonneratia with particular reference to their systematic position. IAWA Bulletin 8: 337–345.

    Google Scholar 

  • Rao, T. A. & S. Das. 1979. Leaf sclereids – occurrence and distribution in the angiosperms. Botaniske Notiser 132: 319–324.

    Google Scholar 

  • Rawat, M. S., J. Mukherjee, & B. S. Venkatachala. 1977. Palynology of the Kadi formation, Cambay Basin, India. Pp 179–192. In: Proceedings of the IV Colloquium on Indian Micropaleontology and Stratigraphy. Dehra Dun, India.

  • Regali, M. S. P., N. Uesugui & A. S. Santos. 1974. Palinología dos sedimentos Meso-Cenozóicos do Brasil (II). Boletim Técnico PETROBRÁS, Rio de Janeiro 17: 263–301. 25 pls.

    Google Scholar 

  • Reid, E. M. & M. E. J. Chandler. 1933. The flora of the London Clay. British Museum (Natural History), London. 561 pp.

    Google Scholar 

  • Reinink-Smith, L. M. & E. B. Leopold. 2005. Warm climate in the late Miocene of the south coast of Alaska and the occurrence of Podocarpaceae pollen. Palynology 29: 205–262.

    Google Scholar 

  • Renner, S. S. & K. Meyer. 2001. Melastomeae come full circle: Biogeographic reconstruction and molecular clock dating. Evolution 55: 1315–1324.

    CAS  PubMed  Google Scholar 

  • ———, G. Clausing & K. Meyer. 2001. Historical biogeography of Melastomataceae: The roles of Tertiary migration and long-distance dispersal. American Journal of Botany 88: 1290–1300.

    Article  CAS  PubMed  Google Scholar 

  • Rérolle, L. (1884-) 1885. Végétaux fossiles de Cerdagne. Revue Scientifique National Montpellier, sér. 3, 4:167–386.

  • Ricklefs, R. E. 2007. Estimating diversification rates from phylogenetic information. Trends in Ecology and Evolution 22: 601–610.

    Article  PubMed  Google Scholar 

  • Rode, K. P. 1936. A silicified dicotyledonous wood: Dryoxylon mohgaoense sp. nov. from the Deccan Intertrappean Beds of India. Journal of the Indian Botanical Society 15: 131–138.

    Google Scholar 

  • Rodríguez-de la Rosa, R. A., S. R. S. Cevallos-Ferriz & A. Silva-Pineda. 1998. Paleobiological implications of Campanian coprolites. Palaeogeography, Palaeoclimatology, Palaeoecology 142: 231–254.

    Article  Google Scholar 

  • Rögl, F. 1999. Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geologica Carpathica [Bratislava] 50: 339–349.

    Google Scholar 

  • Rugmai, W., P. J. Grote, C. Chonglakmani, R. Zetter & D. K. Ferguson. 2008. A late Pleistocene palynoflora from the coastal area of Songkhla Lake, southern Thailand. ScienceAsia 34: 137–145.

    Article  Google Scholar 

  • Sahni, B. 1934. “The silicified flora of the Deccan Intertrappean series” by Sahni, Srivastava and Rao. Pt. II. Gymnospermous and angiospermous fruits. Pp 317-318. Proceedings of the 21st Indian Science Congress (Bombay meeting).

  • ——— 1943. Indian silicified plants 2. Enigmocarpon parijai, a silicified fruit from the Deccan with a review of the fossil history of the Lythraceae. Proceedings of the Indian Academy of Science 17B: 59–96. 7 pls.

    Google Scholar 

  • ——— & K. P. Rode. 1937. Fossil plants from the Intertrappean beds at Mohgaon Kalan, in the Deccan, with a sketch of the geology of the Chhindwara District. Proceedings of the National Academy of Science, India 7: 165–174. 3 figs.

    Google Scholar 

  • Salard-Cheboldaeff, M. 1976. Présence de l’Oligocène dans le bassin sédimentaire cȏtier du Cameroun. Revue de Micropaléontologie 18: 236–245.

    Google Scholar 

  • ——— 1978. Sur la palynoflore Maestrichtieene et Tertiaire du bassin sédimentaire littoral du Cameroun. Pollen et Spores 20: 215–260.

    Google Scholar 

  • ——— 1981. Palynologie Maestrichtienne et Tertiaire du Cameroun. Resultats botaniques. Review of Palaeobotany and Palynology 32: 401–439.

    Article  Google Scholar 

  • Saporta, G. 1878. Essai descriptif sur les plantes fossiles des arkoses de brives pres dle Puy-en-Velay. Typographie et litographie M.-P. Marchessou, Le Puy, Ann. Soc. Agric. Arts et Commerce du Puy 33. [Carpolithus pomeli Saporta, p 67 + pl. 9, figs. 98–100].

  • Schenk, A. 1877. Zur Kenntnis der Strukturverhältnisse fossiler Pflanzen. Botanische Zeitung 35: 394–407.

    Google Scholar 

  • Scherer, C. & M. L. Lorscheitter. 2009. Pólen de gimnospermas e angiospermas em sedimentos quaternários de duas matas com Araucária, planalto leste do Rio Grande do Sul, Brasil. Acta Botanica Brasilica 23: 681–696.

    Article  Google Scholar 

  • Schofield, J. E. & M. J. Bunting. 2005. Mid-Holocene presence of water chestnut (Trapa natans L.) in the meres of Holderness, East Yorkshire, UK. The Holocene 15: 687–697.

    Article  Google Scholar 

  • Sepulchre, P., D. Jolly, S. Ducrocq, Y. Chaimanee, J.-J. Jaeger & A. Raillard. 2010. Mid-Tertiary paleoenvironments in Thailand: pollen evidence. Climate of the Past 6: 461–473.

    Article  Google Scholar 

  • Shallom, L. J. 1963. Fossil dicotyledonous wood from the Deccan Intertrappean Beds of Chhindwara. Journal of the Indian Botanical Society 42: 161–169.

    Google Scholar 

  • Shaw, C.-L. 1995. Palynomorphs of Oligo-Miocene in Taiwan. Taiwania 40: 57–68.

    Google Scholar 

  • Sheikh, M. T. & D. K. Kapgate. 1984. A fossil capsule with winged seeds from the Intertrappean Series of India. Current Science 53: 656–657.

    Google Scholar 

  • Shelomentseva, A. A. 1992. A fossil wood of Sonneratioxylon from the Upper Cretaceous of Dzhetymtau. Paleontologicheskii Zhurnal 1992: 138–141.

    Google Scholar 

  • Shete, R. H. & A. R. Kulkarni. 1982. Contributions to the dicotyledonous woods of the Deccan Intertrappean (Early Tertiary) Beds of Wardha district, Maharashtra, India. Palaeontographica Abteilung B 183: 57–81. 6 pls.

    Google Scholar 

  • Shi, S., Y. Huang, F. Tan, X. He & D. E. Boufford. 2000. Phylogenetic analysis of the Sonneratiaceae and its relationship to Lythraceae based on ITS sequences of nrDNA. Journal of Plant Research 113: 253–258.

    Article  CAS  Google Scholar 

  • Shilkina, I. A. 1973. On the xylem anatomy of the genus Punica L. Botaničeskij Žurnal 58: 1628–1630. 2 pl.

    Google Scholar 

  • Shtephyrtza, A. G. 1989. Representatives of the genera Myrica, Carya, Punica and Periploca in the early Sarmatian flora of Bursuk (Moldovaia). Botaničeskij Žurnal 74: 1552–1558.

    Google Scholar 

  • Shukla, V. B. 1944. On Sahnianthus, a new genus of petrified flowers from the Intertrappean Beds at Mohgaon Kalan in the Deccan and its relation with the fruit Enigmocarpon parijai Sahni from the same locality. Proceedings of the National Academy of Sciences, India 14B: 1–39. 8 pls.

    Google Scholar 

  • ——— 1947 [1948]. Links between the flower Sahnianthus and the fruit Enigmocarpon. Journal of the Indian Botanical Society 26: 258–259

  • Shukla, V. B. 1950a. A fossil dicotyledonous leaf (?Lythraceae). Journal of the Indian Botanical Society 29: 29. pl. 2, fig. 16.

    Google Scholar 

  • ——— 1950b. Sahnipushpam gen. nov. and other plant remains from the Deccan intertrappeans. Journal of the Indian Botanical Society 29: 29.

    Google Scholar 

  • ——— 1958. Sahnianthus dinectrianum, sp. nov., a new species of the petrified flower Sahnianthus from the Eocene beds of the Deccan. Journal of the Palaeontological Society of India 3: 114–118.

    Google Scholar 

  • Singh, H., M. Prasad, K. Kumar, R. S. Rana & S. K. Singh. 2010. Fossil fruits from early Eocene Vastan Lignite, Gujarat, India: Taphonomic and phytogeographic implications. Current Science 98: 1625–1632.

    Google Scholar 

  • Singh, R. S. & R. K. Kar. 2002. Palaeocene palynofossils from the Lalitpur Intertrappean Beds, Uttar Pradesh, India. Journal of the Geological Society of India 60: 213–216.

    Google Scholar 

  • Sohma, K. 1973. Florschuetzia, a new fossil Sonneratioid pollen genus from Sulawesi, Indonesia. Science Report Tohoku University, 4th series. Biology 36: 261–266.

    Google Scholar 

  • Song, Z.-C., W.-M. Wang & F. Huang. 2004. Fossil pollen records of extant angiosperms in China. Botanical Review 70: 425–458.

    Article  Google Scholar 

  • ———, Y. Zheng, M. Li, Y. Zhang, W. Wang, D. Wang, C. Zhao, S. Zhou, Z. Zhu & Y. Zhao. 1999. Fossil spores and pollen of China. Vol. 1. Late Cretaceous and Tertiary spores and pollen. Science Press, Beijing, China.

    Google Scholar 

  • Songtham, W., B. Ratanasthien, M. Watanasak, D. C. Mildenhall, S. Singharajwarapan & W. Kandharosa. 2005. Tertiary basin evolution in northern Thailand: A palynological point of view. Natural History Bulletin of the Siam Society 53: 17–32.

    Google Scholar 

  • Srivastava, R. 2008. Fossil woods resembling Sonneratia with fungal infection from Deccan Intertrappean sediments of Seoni District, Madhya Pradesh. Geophytology 37: 87–92.

    Google Scholar 

  • Srivastava, G. P. & M. B. Bande. 1992. Fossil woods of Terminalia and Lagerstroemia from the late Cenozoic beds of Mahuadanr, Palamu district, Bihar. Palaeobotanist 39: 333–337.

    Google Scholar 

  • Srivastava, R. & J. S. Guleria. 2006. A catalogue of Cenozoic (Tertiary) plant megafossils from India (1989-2005). Diamond Jubilee Special Publication, Birbal Sahni Institute of Palaeobotany, Lucknow. 76 pp.

    Google Scholar 

  • ——— & M. Suzuki. 2001. More fossil woods from the Palaeogene of northern Kyushu, Japan. IAWA Journal 22: 85–105.

    Google Scholar 

  • Stanton, T. W. & F. H. Knowlton. 1897. Stratigraphy and paleontology of the Laramie and related formations in Wyoming. Bulletin of the Geological Society of America 8: 127–156.

    Google Scholar 

  • Staub, M. 1887. Die Aguitanische Flora des Szilthales im Comitate Hungad. Magyar Állami Földtani intézert évkönyve hungarici (Annals of the Public Geological Institute of Hungary) 7: 223–417.

    Google Scholar 

  • Stevens, P. R. 2001 [and onwards]. Angiosperm Phylogeny Website. Version 9. June 2008 (and more or less continuously updated). http://www.mobot.org/MOBOT/research/APweb. Accessed Sep 2012.

  • Stockey, R. A. & G. W. Rothwell. 1997. The aquatic angiosperm Trapago angulata from the upper Cretaceous (Maastrichtian) St. Mary River Formation of southern Alberta. International Journal of Plant Sciences 158: 83–94.

    Article  Google Scholar 

  • Straka, H. & D. Ohngemach. 1989. Late Quaternary vegetation history of the Mexican highland. Plant Systematics and Evolution 162: 115–132.

    Article  Google Scholar 

  • Stuchlik, L. (ed). 1994. Neogene pollen flora of Central Europe. Part 1. Acta Palaeobotanica, Supplement 1: 1–56.

  • Stults, D. 2006. Trapa fruits from the late Tertiary of eastern North America. http://2006.botanyconference.org. Abstract ID 252. Accessed 15 Sep 2011.

  • ——— & B. Axsmith. 2011. New taxa and new uses for the Brandywine Flora. 28th Mid-Continent Paleobotany Colloquium, May 20-22. North Carolina State University, Raleigh, North Carolina. Abstract. http://www4.ncsu.edu/~xylem/mpc.ab.text.html. Accessed Sep 2011.

  • Sun, X.-J., Z.-C. Kong & M.-X. Li. 1980. Paleogene new pollen genera and species of South China Sea. Acta Botanica Sinica 22: 191–197.

    Google Scholar 

  • Sytsma, K. J., A. Litt, M. L. Zjhra, J. C. Pires, M. Nepokroeff, E. Conti, J. Walker & P. G. Wilson. 2004. Clades, clocks, and continents: Historical and biogeographical analysis of Myrtaceae, Vochysiaceae, and relatives in the Southern Hemisphere. International Journal of Plant Sciences 165(Supplement): S85–S105.

    Article  CAS  Google Scholar 

  • Szafer, W. 1954. On some living and fossil forms of Trapa L. Acta. 1. Societas Botanicorum Poloniae 23: 117–141. 2 pls.

    Google Scholar 

  • ——— 1961. Miocene Flora of Stare Gliwice in upper Silesia. Prace Instytut Geologiczny 33: 1–205.

    Google Scholar 

  • Tanai, T. & N. Suzuki. 1963. Miocene floras of southwestern Hokkaido, Japan. Pp 9–149, + 27 pls. In: Chaney, R. (ed). Tertiary floras of Japan, I. Miocene floras. Collaborative Association to Commemorate the 80th Anniversary of the Geological Survey of Japan.

  • ——— & K. Uemura. 1991. The Oligocene Noda flora from the Yuya-wan area of the western end of Honshu, Japan. Part 1. Bulletin of the National Science Museum, Tokyo, series C 17: 57–80.

    Google Scholar 

  • Thiele-Pfeiffer, H. 1980. Die miozäne Mikroflora aus dem Braunkohlentagebau oder bei Wackersdorf/Oberpfalz. Palaeontographica Abteilung B 174: 95–224. 17 pls.

    Google Scholar 

  • ——— 1988. The microflora from the middle Eocene oil shale of Messel near Darmstadt West Germany. Palaeontographica Abteilung B 211: 1–86.

    Google Scholar 

  • Ţicleanu, N. & D. Diaconiƫă. 1997. The main coal facies and lithotypes of the Pliocene coal basin, Oltenia, Romania. Pp 131–139. In: Gayer, R. & J. Pešek (eds). European Coal Geology and Technology, Geological Society, London, Special Publication 125.

  • Tiffney, B. H. 1981. Fruits and seeds of the Brandon Lignite, VI. Microdiptera (Lythraceae). Journal of the Arnold Arboretum 62: 487–516.

    Google Scholar 

  • ——— 1984. Seed size, dispersal syndromes, and the rise of the angiosperms: Evidence and hypothesis. Annals of the Missouri Botanical Garden 71: 551–576.

    Article  Google Scholar 

  • ——— 1994. Re-evaluation of the age of the Brandon Lignite (Vermont, USA) based on plant megafossils. Review of Palaeobotany and Palynology 82: 299–315.

    Article  Google Scholar 

  • Tiwari, R. P. & R. C. Mehrotra. 2000. Fossil woods from the Tipam Group of Mizoram, India. Tertiary Research 20: 85–94.

    Google Scholar 

  • Tobe, H., S. A. Graham & P. H. Raven. 1998. Floral morphology and evolution in Lythraceae sensu lato. pp 329–344. In: S. J. Owens & P. J. Rudall (eds). Reproductive Biology. Royal Botanic Gardens, Kew, England.

    Google Scholar 

  • Tralau, H. 1964. The genus Trapella Oliver in the Tertiary of Europe. Botaniska Notiser 117: 119–123.

    Google Scholar 

  • Trivedi, T. 1956. Fossil dicotyledonous leaf impressions from the intertrappean beds of Bharatwara, Nagpur District. Journal of the Palaeontological Society of India 1: 186–188.

    Google Scholar 

  • Turner, G. W. & N. R. Lersten. 1983. Apical foliar nectary of pomegranate (Punica granatum: Punicaceae). American Journal of Botany 70: 475–480.

    Article  Google Scholar 

  • Tzvelev, N. N. 1993. The genus Trapa L. (Trapaceae) in eastern Europe and Boreal Asia. Novosti Sistematiki Vysshikh Rasteny 29: 99–107.

    Google Scholar 

  • Van Campo, E. 1989. Flore pollinique du Miocene Superieur de Venta del Moro (Espagne). Acta Palynologica 1: 9–32.

    Google Scholar 

  • Van der Burgh, J. 1987. Miocene floras in the lower Rhenish basin and their ecological interpretation. Review of Palaeobotany and Palynology 52: 299–366.

    Article  Google Scholar 

  • ——— & R. Zetter. 1998. Plant mega- and microfossil assemblages from the Brunssumian of ‘Hambach’ near Düren, B. R. D. Review of Palaeobotany and Palynology 101: 209–256.

    Article  Google Scholar 

  • Van der Hammen, T. & E. González. 1960. Upper Pleistocene and Holocene climate and vegetation of the “Sabana de Bogotá” (Colombia, South America). Leidse Geologische Mededelingen 25: 261–-315.

    Google Scholar 

  • ——— & T. A. Wijmstra. 1964. A palynological study on the Tertiary and upper Cretaceous of British Guiana. Leidse Geologische Mededelingen 30: 183–241.

    Google Scholar 

  • Van Leeuwen, J. F. N., C. A. Froyd, W. O. van der Knaap, E. E. Coffey, A. Tye & K. J. Willis. 2008. Fossil pollen as a guide to conservation in the Galápagos. Science 322(5905): 1206.

    Article  PubMed  CAS  Google Scholar 

  • Van Vliet, G. J. C. M. & P. Baas. 1984. Wood anatomy and classification of the Myrtales. Annals of the Missouri Botanical Garden 71: 783–800.

    Article  Google Scholar 

  • Van Zinderen Bakker, E. M. & J. A. Coetzee. 1988. A review of Late Quaternary pollen studies in East, Central and Southern Africa. Review of Palaeobotany and Palynology 55: 155–174.

    Article  Google Scholar 

  • Vassiljev, V. N. 1960. [Review of] Sh. Miki. On the systematic position of Hemitrapa and some other fossil Trapa. 1952; Sh. Miki. Evolution of Trapa from ancestral Lythrum through Hemitrapa. 1959. Botaničeskii Žurnal 45(5): 772–-774.

    Google Scholar 

  • ——— 1967. New Genus of Trapaceae. Paleontologicheskii Zhurnal 2: 107–112. pl. 7.

    Google Scholar 

  • Venkatachala, B. S. & R. K. Kar. 1968 [1969]. Palynology of the Tertiary sediments of Kutch –1. Spores and pollen from bore-hole no. 14. Palaeobotanist 17: 157–178 + 3 pls.

  • ——— & M. S. Rawat. 1972. Palynology of the Tertiary sediments in the Cauvery basin. 1. Palaeocene-Eocene palynoflora from the subsurface. Pp 292–335. In: Ghosh, A. K. (ed). Proceedings, Seminar on Paleopalynology and Indian Stratigraphy. Calcutta, 1971.

  • Verdcourt, B. 1998. FSA contributions 10: Trapaceae. Bothalia 28: 11–14.

    Google Scholar 

  • Verma, J. K. 1950. A fossil dicot wood from the intertrappean cherts of Mohgaon Kalan. Journal of the Indian Botanical Society 29: 30.

    Google Scholar 

  • ——— 1956. On a new petrified flower Sahnipushpam shuklai sp. nov. from the intertrappean beds of Mohgaon Kalan in the Deccan. Journal of the Paleontological Society of India 1: 131–141.

    Google Scholar 

  • Vozenin-Serra, C., C. Privé-Gill & L. Ginsburg. 1989. Bois Miocenes du gisement de Pong, nord-ouest de la Thailande. Review of Palaeobotany and Palynology 58: 333–355.

    Article  Google Scholar 

  • Wang, D., S. Xiuyu & Y. Zhao. 1990. Late Cretaceous to Tertiary palynofloras in Xinjiang and Qinghai, China. Review of Paleobotany and Palynology 65: 95–104.

    Article  Google Scholar 

  • Wang, H., M. J. Moore, P. S. Soltis, C. D. Bell, S. F. Brockington, R. Alexandre, C. C. Davis, M. Latvis, S. R. Manchester & D. E. Soltis. 2009. Rosid radiation and the rapid rise of angiosperm-dominated forests. Proceedings of the National Academy of Science 106: 3853–3858.

    Article  CAS  Google Scholar 

  • Wang, W.-M. 2006. Correlation of pollen sequences in the Neogene palynofloristic regtions of China. Palaeoworld 15: 77–99.

    Article  Google Scholar 

  • Ward, L. F. 1885. Synopsis of the Flora of the Laramie Group. Annual Report, United States Geological Survey 6: 399–-577. 65 pls.

    Google Scholar 

  • ——— 1887. Types of the Laramie flora. Bulletin of the United States Geological Survey No. 37., Washington, D. C. 354 pp + 47 pls.

  • Wasylikowa, K. 1967. Late Quaternary plant macrofossils from Lake Zeribar, western Iran. Review of Palaeobotany and Palynology 2: 313–318.

    Article  Google Scholar 

  • Watanasak, M. 1990. Mid Tertiary palynostratigraphy of Thailand. Journal of South East Asian Earth Sciences 4: 203–218.

    Article  Google Scholar 

  • Webb, D. A. 1967. Generic limits in European Lythraceae. Feddes Repertorium 74: 10–13.

    Google Scholar 

  • ——— 1980. Lythraceae. pp 300–303. In: T. G. Tutin (ed). Flora Europaea, Vol. 2. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Welch, J. J. & L. Bromham. 2005. Molecular dating when rates vary. Trends in Ecology & Evolution 20: 320–327.

    Article  Google Scholar 

  • West, I. 2010. The Eocene Cliffs, with leaf beds, of Bournemouth Dorset-Geology of the Wessex coast. www.soton.ac.uk/imw/bourne.ht. Accessed Apr 2011.

  • Weyland, H. 1948. Beiträge zur Kenntnis der rheinischen Tertiärfloren VII. Palaeontografica Abteilung B 88: 142. pl. 21, fig. 7.

    Google Scholar 

  • Whitney, B. S., F. E. Mayle, S. W. Punyasena, K. A. Fitzpatrick, M. J. Burn, R. Guillen, E. Chavez, D. Mann, R. T. Pennington & S. E. Metcalfe. 2011. A 45 kyr palaeoclimate record from the lowland interior of tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology 307: 177–192.

    Article  Google Scholar 

  • Wijmstra, T. A. 1969. Palynology of the first 30 metres of a 120 m deep section in northern Greece. Acta Botanica Neerlandica 18: 511–527.

    Google Scholar 

  • Wijninga, V. M. 1996a. A Pliocene Podocarpus forest mire from the area of the high plain of Bogotá (Cordillera Oriental, Colombia). Review of Palaeobotany and Palynology 92: 157–205.

    Article  Google Scholar 

  • ——— 1996b. Paleobotany and palynology of Neogene sediments from the High Plain of Bogotá (Colombia). Ph.D. Dissertation, University of Amsterdam, The Netherlands. 370 pp. (Printed in part in The Quaternary of Colombia, Vol. 21.)

  • Wójcicki, J. J. & J. Bajzáth. 1997. Trapa praehungarica, a new fossil species from the upper Pannonian of Hungary. Acta Palaeobotanica 37: 51–54.

    Google Scholar 

  • ——— & Z. Kvaček. 2002a. Schenkiella genus novum, thorny disseminules of unknown affinities from the lower Miocene of central Europe. Acta Palaeobotanica 42: 109–116.

    Google Scholar 

  • ——— & ———. 2002b. Hemitrapa fruits (Trapaceae) in the late early Miocene Lom Coal Seam, Most Formation, North Bohemia. Acta Palaeobotanica 42: 117–124.

    Google Scholar 

  • ——— & ———. 2003. The earliest fossil record of the Trapaceae in Europe from the late Eocene diatomite of Kučlin, north Bohemia. Phytologia Balcanica 9: 165–174.

    Google Scholar 

  • ——— & D. Velitzelos. 2007. Trapa kvacekii (Trapaceae), a remarkable new fossil species from the late Miocene of Greece. Acta Palaeobotanica 47: 419–424.

    Google Scholar 

  • ——— & V. Wilde. 2001. A new species of Trapa (Trapaceae) from the Pliocene of the Zennern Depression, near Fritzlar (Hesse, Germany). Senckenbergiana Lethaea 81: 17–23.

    Article  Google Scholar 

  • ——— & E. Zastawniak. 1998. Trapa srodoniana, a new fossil species from the Pliocene of Bełchatow (Middle Poland). Acta Palaeobotanica 38: 167–174.

    Google Scholar 

  • ——— & ———. 2002. Late Miocene Trapa L. (Trapaceae) of Sośnica (SW Poland) revisited. Acta Palaeobotanica 42: 29–38.

    Google Scholar 

  • ———, S. Song & Y. Wang. 1999. Fossil Trapa L. of China. 1. A new locality from the Miocene of the Liang He Coal mine, West Yunnan. Acta Palaeobotanica 39: 5–14.

    Google Scholar 

  • Wolfe, J. A., D. M. Hopkins & E. B. Leopold. 1966. Tertiary stratigraphy and paleobotany of the Cook Inlet region, Alaska. United States Geological Survey Professional Paper 398-A: 1–37.

    Google Scholar 

  • ——— & T. Tanai. 1980. The Miocene Seldovia Point flora from the Kenai Group, Alaska. United States Geological Survey Professional Paper 1105: 1–54. 25 pls.

    Google Scholar 

  • Worobiec, E. 2009. Middle Miocene palynoflora of the Legnica lignite deposit complex, Lower Silesia, Poland. Acta Palaeobotanica 49: 5–133.

    Google Scholar 

  • Wymstra, T. A. & T. van der Hammen. 1966. Palynological data on the history of tropical savannas in northern South America. Leidse Geologische Mededelingen 38: 71–90.

    Google Scholar 

  • Yamanoi, T. 1978. Neogene pollen stratigraphy of the Sado Island. Niigata Prefecture, Japan. Journal of the Japanese Association of Petroleum Technology 43: 1–9.

    Article  Google Scholar 

  • ——— 1984. Presence of sonneratiaceous pollen in middle Miocene sediments, Central Japan. Review of Palaeobotany and Palynology 40: 347–357.

    Article  Google Scholar 

  • ——— 1992a. The palyno-flora of early middle Miocene sediments in the Pohang and Yangnam Basins, Korea. pp 473–480. In: K. Ishizaki & T. Saito (eds). Centenary of Japanese Micropaleontology. Terra Scientific Publishing Co., Tokyo.

    Google Scholar 

  • ——— 1992b. 28. Miocene pollen stratigraphy of Leg 127 in the Japan Sea and comparison with the standard Neogene pollen floras of Northeast Japan. pp 471–487. In: K. A. Pisciotto, J. C. Ingle Jr., M. T. von Breymann, J. Barron, et al. (eds). Proceedings of the Ocean Drilling Program, Scientific Results 127/128, Part 1. Texas A. & M. University Press, College Station, Texas.

    Google Scholar 

  • ——— 1992c. Palyno-floras of early middle Miocene sediment in central Japan. Bulletin of the Mizunami Fossil Museum 19: 103–112.

    Google Scholar 

  • Zetter, R. & D. K. Ferguson. 2001. Trapaceae pollen in the Cenozoic. Acta Palaeobotanica 41: 321–339.

    Google Scholar 

  • Zhang, Y. Y. & J. Z. Zhan. 1991. Late Cretaceous and Early Tertiary spores and pollen from the Western Tarim Basin, S. Xinjiang, China. Science Press, Beijing [Rugulitriporites cf. vestibulipori Muller, p. 226, pl. 73, fig. 1–3.].

    Google Scholar 

  • Zheng, A. & Q. Li. 2000. Vegetation, climate, and sea level in the past 55,000 years, Hanjiang Delta, southeastern China. Quaternary Research (Orlando) 53: 330–340.

    Article  Google Scholar 

Download references

Acknowledgments

I appreciate the help of many people around the world who answered my questions and provided digital images and advice: M. Collinson, L. Cripps, D. Erwin, E. M. Friis, L. Goloneva, F. Grimsson, B. Jacobs, D. Kapgate, J. Keller, F. Krasnov, S. Manchester, B. Mohr, K. Pigg, T. Shulkina, M. Stiffler, R. Stockey, D. Stultz, H.-D. Sues, S. Wing, R. Zetter, and especially A. Graham for his suggestions, help with many references, and review of the manuscript. The Missouri Botanical Garden generously provided physical facilities and extensive library support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirley A. Graham.

Appendix

Appendix

Table 5 Fossil Lythraceae. The list includes taxa attributed to modern, extinct, or form genera of the Lythraceae. The taxa are evaluated at the family and generic level; species are not evaluated taxonomically or nomenclaturally. The status of a fossil is “accepted”, “unconfirmed”, or “rejected” based on the quality of the information provided in the referenced description and/or illustrations. Actual type specimens have not been examined in most instances. “Accepted” refers to fossils that unquestionably represent a modern or extinct member of the Lythraceae. They may be accepted at the family level only (as Lyth) or also at the generic level. “Unconfirmed” refers to reports that lack sufficient information to establish the relationship with certainty. “Rejected” refers to fossils that have been attributed in error to the family or genus based on published data that is clearly incompatible with accepted parameters of the taxa. “Listed” refers to a fossil assigned in name to a fossil flora without further documentation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, S.A. Fossil Records in the Lythraceae. Bot. Rev. 79, 48–145 (2013). https://doi.org/10.1007/s12229-012-9116-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-012-9116-1

Keywords

Navigation