Skip to main content

Advertisement

Log in

Rescuing Robert Brown—The Origins of Angio-Ovuly in Seed Cones of Conifers

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Robert Brown (1827) recognized the distinction between the two major classes of seed plants on the basis, respectively, of exposed ovules, which receive pollen directly, and enclosed ovules, which do not, at the time of pollination. The two groups, unfortunately, became known as “Gymnosperms” and “Angiosperms”, a distinction not made by Brown. The names are, at best, useful only as identifying labels. As is established here, gymno-ovuly and angio-ovuly would have been better words and should serve as the most consistent distinguishing character among groups of seed plants. Although conifers can hardly be claimed to be members of any lineage that led to the Angiosperms, the gymno-ovulate method of reproduction must have occurred in the direct ancestors of flowering plants. Interpolating development and functional evidence serves to resurrect Robert Brown’s important but neglected observation and correct misstatements implied in generally accepted systematic terminology. The result of this approach is to discover that the conifers in their reproductive diversity show some trends indicative of those characters that define the flowering plants. Although non-homologous these character manifestations provide useful models which can lead to a better understanding of the origin of “Angiosperms” from “Gymnosperms.” In the complex and extended process of reproductive development in both major groups regular transpositions occur, depending on whether “gymno-”and “angio-”are applied to ovules or seeds. Gymno-ovuly and angio-spermy are the most common conditions in conifers but result in intrinsically opposed processes of pollen reception and subsequent seed protection, which are resolved by successive changes in seed-cone structure. The modern conifers illustrate considerable diversity of ovulate and seed cone structure in relation to several biological functions, including traits that anticipate the angio-ovulate condition, in cone inception, ovule enclosure, pollen and embryo development and seed dispersal. From the paleobotanical record we do have a good grasp of the structural changes in the progressive modification of the coniferous seed cone in conifers, starting with the antecedent Carboniferous Cordaitales. These changes have involved the progressive condensation of a lax, branched strobilus and end with the highly condensed uniovulate “cone” as in many Podocarpus species in which the equivalent of a bitegmic ovule exists. The progressive changes can be perceived typologically among existing conifers but need to be understood as the result of biological processes that suggest increased reproductive efficiency, and can be added to our present quite robust understanding of conifer phylogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Literature Cited

  • Andrews, H. N. 1980. The fossil hunters. In search of ancient plants. Cornell University Press, Ithaca.

    Google Scholar 

  • Bohne, G., H. Woehlke & R. Ehwald. 2005. Water relations of the pine exine. Annals of Botany 96: 201–208.

    Article  PubMed  CAS  Google Scholar 

  • Brongniart, A. 1828. Prodrome d’une histoire des vegetaux fossiles. In Grand Dictionaire d’Histoire naturelle. T LVII 8. pp. 233.

  • Brown, R. 1827. Character and description of Kingia; a new genus of plants found on the southwest coast of New Holland with observations on the structure of its unimpregnated ovulum, and on the female flower of Cycadeae and Coniferae. Reprinted from Narrative of a survey of the intertropical and western coasts of Australia performed between the years 1818 and 1822 by Captain Philip P. King R.N., F.R.S., F.L.S., Vol. 2, London.

  • ———. 1844. On the plurality and development of the embryos in the seeds of Coniferae. Annals and Magazine of Natural History May XLIV: 1–7.

  • Brown, S. D. & F. E. Bridgewater. 1987. Observations on pollination in loblolly pine. Canadian Journal of Forestry Research 17: 299–303.

    Article  Google Scholar 

  • Cain, S. A. 1940. The identification of species of fossil pollen of Pinus by size-frequency determinations. American Journal of Botany 27: 301–308.

    Article  Google Scholar 

  • Coulter, J. & W. Land. 1905. Gametophyte and embryo development of Torreya taxifolia. Botanical Gazette 39: 161–178.

    Article  Google Scholar 

  • Cresswell, J. E., K. Henning, C. Pennel, M. Lahoubi, M. A. Patrick, P. G. Young & G. A. Tabor. 2007. Conifer ovulate cones accumulate pollen principally by simple impaction. Proceedings of the National Academy of Science 104: 18141–18144.

    Article  CAS  Google Scholar 

  • Doyle, J. 1945. Developmental lines in pollination mechanisms in the Coniferales. Scientific Proceedings Royal Dublin Society (NS), Ser. A 24: 43–62.

    Google Scholar 

  • Dupler, A. W. 1920. Ovuliferous structures of Taxus canadensis. Botanical Gazette 69: 92–102.

    Article  Google Scholar 

  • Endress, P. K. 2011. Angiosperm ovules: diversity, development, evolution. Annals of Botany 107: 1465–1489.

    Article  PubMed  Google Scholar 

  • Farjon, A. & S. O. Garcia. 2002. Towards the minimal conifer cone: ontogeny and trends in Cupressus, Juniperus and Microbiota (Cupressaceae s. str.). Botanische Jahrbücher 124: 129–147.

    Article  Google Scholar 

  • ——— & ———. 2003. Cone and ovule development in Cunninghamia and Taiwania (Cupressacese sensu lato) and its significance for conifer evolution. American Journal of Botany 92: 8–16.

    Article  Google Scholar 

  • ———, N. T. Hiep, D. T. Harder, P. K Loe & L. Averyanov. 2002. A new genus and species in the Cupressaceae (Coniferales) from northern Vietnam, Xanthocyperus vietnamensis. Novon 12: 179–189.

    Article  Google Scholar 

  • Ferguson, M. C. 1901. The development of the pollen-tube and the division of the generative nucleus in certain species of Pines. Annals of Botany 15(58): 193–223. + Pl. XII-XIV.

    Google Scholar 

  • Florin, R. 1938–45. Die Koniferen des Oberkarbons und des unteren Perms. I-VIII. Palaeontographica B 85: 1–729.

  • ———. 1951. Evolution in cordaites and conifers. Acta Horti Bergiana 15: 285–388.

    Google Scholar 

  • ———. 1954. The female reproductive organs of conifers and taxads. Biological Reviews 29: 367–389.

    Article  Google Scholar 

  • Frame, D. 2003. The pollen tube pathway in Tassmannia insipida (Winteraceae): homology of the male gametophyte conducting tisssues in angiosperms. Plant Biology 5: 290–296.

    Article  Google Scholar 

  • Gelbart, G. & P. von Aderkas. 2002. Ovular secretions as part of pollination mechanisms in conifers. Annals of Forestry Science 59: 345–357.

    Article  Google Scholar 

  • Givnish, T. J. 1980. Ecological constraints on the evolution of breeding systems in seed plants; dioecy and dispersal in gymnosperms. Evolution 34: 959–997.

    Article  Google Scholar 

  • Jagel, A. & T. Stützel. 2001. Untersuchungen zur Morphologie und Morphogenese der Samenzapfen von Platycladus orientalis (L.) Franco (=Thuja orientalis L.) und Microbiota decussata Kum. (Cupressaceae). Botanische Jahrbüchen 123: 377–404.

    Google Scholar 

  • Jones, W. G., K. D. Hill & J. M. Allen. 1995. Wollemia nobilis, a new living genus and species. Telopea 6: 173–176.

    Google Scholar 

  • Kato, M., T. Inoue & T. Nagamitsu. 1995. Pollination biology of Gnetum (Gnetaceae) in a lowland mixed dipterocarp forest in Malaysia. American Journal of Botany 82: 862–868.

    Article  Google Scholar 

  • Knoll, A. 1986. Patterns of change in plant communities through geological time. Chapter 7 Pp.126-141 In: Community Ecology. Harper and Row. New York

  • Kurmann, M. H. 1991. Exine stratification in extant gymnosperms: a review of published transmission electron micrographs. Kew Bulletin 47: 25–39.

    Article  Google Scholar 

  • Labandeira, C. C., J. Kvacek & M. B. Mostovski. 2007. Pollination drops, pollen and insect pollination of Mesozoic gymnosperms. Taxon 56: 663–695.

    Article  Google Scholar 

  • Leslie, A. B. 2008. Interpreting the function of saccate pollen in ancient conifers and other seed plants. International Journal of Plant Sciences 169: 1039–1045.

    Article  Google Scholar 

  • ——— 2010. Flotaton preferentially selects saccate pollen during conifer pollination. New Phytologist 188: 273–279.

    Article  PubMed  Google Scholar 

  • Lindley, J. 1830. Introduction to the natural system of Botany. Longman, London.

    Book  Google Scholar 

  • Mabberley, D. J. 1985. Jupiter Botanicus. Robert Brown of the British Museum. J. Cramer. Braunschweig; British Museum (Natural History), London.

  • McWilliams, J. 1958. The rôle of the micropyle in the pollination of Pinus. Botanical Gazette 12: 109–117.

    Article  Google Scholar 

  • Mill, R. R., M. Möller, F. Christie, S. M. Glidewell, D. Masson & B. Williamson. 2001. Morphology, anatomy and ontogeny of female cones in Acmopyle pancheri (Brongn. & Gris.) Pilg. (Podocarpaceae). Annals of Botany 88: 55–67.

    Article  Google Scholar 

  • Mugnaini, S., M. Nepi, M. Guarnieri, B. Piotti & E. Pacini. 2007. Pollination drop in Juniperus communis; response to deposited material. Annals of Botany 100: 1475–1481.

    Article  PubMed  Google Scholar 

  • Mundry, I. 2000. Morphologische und morphogenetische Untersuchungen zur Evolution der Gymnospermen. Bibliothetica Botanica 152: 90.

    Google Scholar 

  • Nelson, E. 1967. Dynamical theories of Brownian motion. Mathematical Notes. Princeton University Press, Princeton. New Jersey.

  • Nepi, M., P. von Aderkas, R. Wagner, S. Mugnaini, A. Coulter & E. Pacini. 2009. Nectar and pollination drops: how different are they? Annals of Botany 104: 205–2009.

    Article  PubMed  CAS  Google Scholar 

  • Niklas, K. 1984. The motion of windborne pollen grains around conifer ovulate cones – implications in wind pollination. American Journal of Botany 71: 356–374.

    Article  Google Scholar 

  • Niklas, K. J. 1985. The aerodynamics of wind pollination. Botanical Review 51: 328–386.

    Article  Google Scholar 

  • Owens, J. N., G. L. Catalano, S. J. Morris & J. Aitken-Christie. 1995. The reproductive biology of Kauri (Agathis australis). I. Pollination and prefertilization development. International Journal of Plant Sciences 156: 257–269.

    Article  Google Scholar 

  • ———, T. Takaso & C. J. Runions. 1998. Pollination in conifers. Trends in Plant Science 3: 479–485.

    Article  Google Scholar 

  • Page, C. N. 1990. Pinatae. Pp 290–361. In: K. U. Kramer, P. S. Green, & K. Kubitzki (eds). The families and genera of vascular plants: pteridophytes and gymnosperms, Vol. 1. Springer, Berlin.

    Google Scholar 

  • Porsch, O. 1907. Versuch einer phylogenetischen Erklärung des Embryosackes und der doppelten Befruchtung der Angiospermum. Gustav Fischer, Jena, Germany.

  • Quinn, C. J., R. A. Price & P. A. Gadek. 2002. Familial concepts and relationships in the conifers based on rbcl and mat k sequence comparisons. Kew Bulletin 57: 513–531.

    Article  Google Scholar 

  • Rai, H. S., P. A. Reeves, R. Peakall, R. G. Olmstead & S. W. Graham. 2008. Inference of higher order conifer relationships from a multi-locus plastid data set. Systematic Botany 97: 658–669.

    Google Scholar 

  • Rothwell, G. A. 1979. Evidence for a pollination-drop mechanism in Paleozoic pteridosperms. Science 198: 1251–1252.

    Article  Google Scholar 

  • Rudall, P. J. & R. M. Bateman. 2007. Developmental bases for key innovations in the seed-plant microgametophyte. Trends in Plant Science 12(7): 317–326.

    Article  PubMed  CAS  Google Scholar 

  • Runions, C. J. & J. N. Owens. 1998. Evidence for pre-zygotic self-incompatibility in a conifer. Pp 255–264. In: S. J. Owens & P. J. Rudall (eds). Reproductive biology. Royal Botanic Gardens, Kew.

    Google Scholar 

  • ———, K. H. Rensing, T. Takaso & J. N. Owens. 1999. Pollination of Picea orientalis; saccus morphology governs buoyancy. American Journal of Botany 86: 190-197.

    Article  PubMed  CAS  Google Scholar 

  • Salter, J., B. G. Murray & J. E. Braggins. 2002. Wettable and unsinkable: the hydrodynamics of saccate pollen grains in relation to the pollination mechanism in the two New Zealand species of Prumnopitys Phil. (Podocarpaceae). Annals of Botany 89: 133–144.

    Article  PubMed  Google Scholar 

  • Schweitzer, H. J. 1963. Der weibliche Zapfen von Pseudovoltzia liebeana und seine Bedeutung für die Phylogenie der Koniferen. Paleontographica B 113: 1–19.

    Google Scholar 

  • Schwendemann, A. B., G. Wang, M. L. Mertz, R. T. McWilliams, S. L. Thatcher & J. M. Osborn. 2007. Aerodynamics of saccate pollen and its implications for wind pollination. American Journal of Botany 94: 1371–1381.

    Article  PubMed  Google Scholar 

  • Southworth, D. 1988. Isolation of exines from gymnosperm pollen. American Journal of Botany 75: 15–21.

    Article  Google Scholar 

  • Stefanović, S., M. Jager, J. Deutsch, J. Broutin & M. Masselot. 1998. Phylogenetic relationships of conifers inferred from partial 285-RNA gene sequences. American Journal of Botany 85: 688–697.

    Article  Google Scholar 

  • Stewart, W. N. 1964. An upward outlook in plant morphology. Phytomorphology 14: 120–126.

    Google Scholar 

  • Stützel, T. & I. Röwekamp. 1999. Female reproductive structures in Taxales. Flora 194: 145–157.

    Google Scholar 

  • ——— & P. B. Tomlinson. 1989. Cone and ovule development in Callitris (Cupressaceae-Callitroideae). Botanical Gazette 150: 378–390.

    Article  Google Scholar 

  • ——— & ———. 1990. Cone and ovule ontogeny in Taxodium and Glyptostrobus (Taxodiaceae-Coniferales). American Journal of Botany 77: 1209–1221.

    Article  Google Scholar 

  • ——— & ———. 1991. Cone and ovule development in Sciadopitys (Taxodiaceae-Coniferales). American Journal of Botany 78: 417–428.

    Article  Google Scholar 

  • ——— & ———. 1992. Seed cone and ovule ontogeny in Metasequoia, Sequoia and Sequoiadendron (Taxodiaceae-Coniferales). Botanical Journal of the Linnean Society 109: 15–37.

    Article  Google Scholar 

  • Takaso, T. & J. N. Owens. 2008. Significance of exine shedding in Cupressaceae-type pollen. Journal of Plant Research 121: 83–85.

    Article  PubMed  Google Scholar 

  • ——— & P. B. Tomlinson. 1989a. Aspects of cone and ovule ontogeny in Cryptomeria (Taxodiaceae). American Journal of Botany 76: 692–705.

    Article  Google Scholar 

  • Taylor, I. N. & K. L. Alvin. 1984. Ultrastructure and development of Mesozoic pollen: Classopolis. American Journal of Botany 71: 575–587.

    Article  Google Scholar 

  • Tomlinson, P. B. 1991. Pollen scavenging as a novel reproductive mechanism in Podocarpaceae. National Geographic Research and Exploration 7: 188–195.

    Google Scholar 

  • ———. 1992. Aspects of cone morphology and development in Podocarpaceae (Coniferales). International Journal of Plant Science 153: 572–588.

    Article  Google Scholar 

  • ———. 1994. Functional morphology of saccate pollen in conifers with special reference to Podocarpaceae. International Journal of Plant Science 155: 699–715.

    Article  Google Scholar 

  • ———. 2000. Structural features of saccate pollen types in relation to their functions. Pp. 147–162. In: M. M. Harley, C. M. Morton & S. Blackmore (eds.), Pollen and spores: morphology and biology. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Tomlinson, P. B. & T. Takaso. 1998. Hydrodynamics of pollen capture in conifers. Pp. 165–175. In: S. J. Owens & P. J. Rudall (eds.), Reproductive biology. Royal Botanic Gardens, Kew.

    Google Scholar 

  • ——— & ———. 2002. Seed cone structure in conifers in relation to development and pollination; a biological approach. Canadian Journal of Botany 80: 1250–1273.

    Article  Google Scholar 

  • ———, ——— & J. A. Rattenbury. 1989a. Cone and ovule ontogeny in Phyllocladus (Podocarpaceae). Botanical Journal of the Linnean Society 99: 209–221.

    Article  Google Scholar 

  • ———, ——— & ———. 1989b. Developmental shoot morphology in Phyllocladus (Podocarpaceae). Botanical Journal of the Linnean Society 99: 223–248.

    Article  Google Scholar 

  • ———, J. E. Braggins & J. A. Rattenbury. 1991. Pollination drop in relation to cone morphology in Podocarpaceae: a novel reproductive mechanism. American Journal of Botany 78: 1289–1303.

    Article  Google Scholar 

  • ———, T. Takaso & E. K. Cameron. 1993. Cone development in Libocedrus (Cupressaceae) – phenological and morphological aspects. American Journal of Botany 80: 649–659.

    Article  Google Scholar 

  • ———, ——— & ———. 1997. Contrasted pollen capture mechanisms in Phyllocladaceae and certain Podocarpaceae (Coniferales). American Journal of Botany 84: 214–223.

    Article  PubMed  CAS  Google Scholar 

  • Ueno, J. 1960. Studies of pollen grains of Gymnospermae. Concluding remarks to the relationships between Coniferae. Journal of the Polytechnic Institute Osaka University ser. D 11: 109–136.

    Google Scholar 

  • Vaucher, J. P. 1841. Histoires physiologiques des Plantes d’Europe. 4: 182–185. Aurel Frères, Paris.

  • Wagner, R. E., S. Mugnaini, R. Sniezko, D. Hardie, B. Poulis, M. Nepi, E. Pacini & P. von Aderkas. 2007. Proteomic evaluation of gymnosperm pollination drop proteins indicates highly conserved and complex biological functions. Sexual Plant Reproduction 20: 181–189.

    Article  CAS  Google Scholar 

  • Weberling, F. 2007. The problem of generalized flowers: morphological aspects. Taxon 56: 707–716.

    Article  Google Scholar 

Download references

Acknowledgments

I thank Jay Horn for creating the basic design of Fig. 2, and Jack Fisher for many corrections. Support for collecting and early work on conifers came from the Cabot Foundation of Harvard University, The National Geographic Society and The National Science Foundation and was carried out with the extensive collaboration of Tokushiro Takaso. I appreciate the opportunity to up-date this manuscript through the generous preview of a review article by Patrick von Aderkas and Natalie Prior. Above all I owe a debt to the late Joseph Doyle who provided the preliminary impetus for entry into the large and complex field of gymno-ovulate biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Tomlinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomlinson, P.B. Rescuing Robert Brown—The Origins of Angio-Ovuly in Seed Cones of Conifers. Bot. Rev. 78, 310–334 (2012). https://doi.org/10.1007/s12229-012-9104-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-012-9104-5

Keywords

Navigation