Skip to main content

Advertisement

Log in

The role of water and vegetation in the distribution of solar energy and local climate: a review

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

The role of plants in global climate change discussions is usually considered only in terms of the albedo and sinks/sources of CO2 and other greenhouse gases. The main aim of this review article is to summarize the entire impact of vegetation on the climate change. It describes quantitatively the energy balance of vegetated surfaces and the effect of vegetation on the hydrological cycle. The distribution of solar energy in the landscape is dealt with in thermodynamic terms. The role of water and plants in the reduction of temperature gradients is emphasized. Papers dealing with the relationship between changes in the landscape cover and regional climates are reviewed, and the fundamental role of wetlands and forests in water cycling is outlined. Positive examples of restoration of dry landscapes, based on rainwater retention and the recovery of permanent vegetation, are described. It is recommended that the direct role of water and vegetation in cooling, reducing temperature and air pressure gradients should be included into all future recommendations for policymakers made by scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acreman MC, Harding RJ, Lloyd CR, McNeil DD (2003) Evaporation characteristics of wetlands: experience from a wet grassland and a reedbed using eddy correlation measurements. Hydrol Earth Syst Sci 7:11–21

    Article  Google Scholar 

  • Ahrens CD (2008) Meteorology today: an introduction to weather, climate and the environment. Ed. 9, Brooks/Cole, California

  • Ali M (2013) Effects of climate change on vegetation. In Ali M (eds) Climate change impacts on plant biomass growth. Springer Science + Business Media, Dordrecht, pp 29–49

    Chapter  Google Scholar 

  • Allen RG, Pereira LS, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Papers 56. Food and Agriculture Organisation of the United Nations, Rome, Italy

  • Andrews P (2006) Back from the brink. ABC Books, Australia

  • Andrich MA, Imberger J (2013) The effect of land clearing on rainfall and fresh water resources in Western Australia: a multi-functional sustainability analysis. Int J Sustain Developm World Ecol 20:549–563

    Article  Google Scholar 

  • Arora V (2002) Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models. Rev Geophys 40:3-1–3-26

  • Arya SP (2001) Introduction to micrometeorology. Academic Press, San Diego

    Google Scholar 

  • Attarod P, Aoki M, Bayramzadeh V (2009) Measurements of the actual evapotranspiration and crop coefficients of summer and winter seasons crops in Japan. Pl Soil Environm 55:121–127

    Google Scholar 

  • Bachelet D, Neilson RP, Lenihan JM, Drapek RJ (2001) Climate change effects on vegetation distribution and carbon budget in the United States. Ecosystems 4:164–165

    Article  CAS  Google Scholar 

  • Bakkenes M, Alkemade JRM, Ihle F, Leemans R, Latour JB (2002) Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biol 8:390–407

    Article  Google Scholar 

  • Baldocchi D (1994) A comparative-study of mass and energy-exchange over a closed C-3 (wheat) and an open C-4 (corn) canopy. 1. The partitioning of available energy into latent and sensible heat-exchange. Agric Forest Meteorol 67:191–220

    Article  Google Scholar 

  • Baldocchi DB, Verma SB, Rosenberg NJ (1985) Water use efficiency in a soybean field: influence of plant water stress. Agric Forest Meteorol 34:53–65

    Article  Google Scholar 

  • Bates JR (1999) A dynamical stabilizer in the climate system: a mechanism suggested by a simple model. Tellus 51A:349– 372

    Article  Google Scholar 

  • Betts AK, Ball JH (1997) Albedo over the boreal forest. J Geophys Res 102:28901–28909

    Article  Google Scholar 

  • Betts RA (2000) Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408:187–190

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya S (2015) Traditional water harvesting structures and sustainable water management in India: a socio-hydrological review. Int Letters Nat Sci 37:30–38

    Google Scholar 

  • Billib M, Holzapfel EA, Fernandez-Cirelli A (2009) Sustainable water resources management for irrigated agriculture in Latin America. Chilean J Agric Res 69:3–5

    Google Scholar 

  • Blanken PD, Black TA, Neumann HH, den Hartog G, Yang PC, Nesic Z, Lee X (2001) The seasonal water and energy exchange above and within a boreal aspen forest. J Hydrol 245:118–136

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  CAS  PubMed  Google Scholar 

  • Bony S, Stevens B, Frierson DMW, Jakob C, Kageyama M, Pincus R, Shepherd TG, Sherwood SC, Siebesma AP, Sobel AH, Watanabe M, Webb MJ (2015) Clouds, circullation and climate sensitivity. Nature Geosci 8:261–268

    Article  CAS  Google Scholar 

  • Bosch JM, Hewlett JD (1982) A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J Hydrol 55:3–23

    Article  Google Scholar 

  • Bounoua L, DeFries R, Collatz GJ, Sellers P, Khan H (2002) Effects of land cover conversion on surface climate. Climatic Change 52:29–64

    Article  Google Scholar 

  • Bradshaw CJA (2012) Little left to lose: deforestation and forest degradation in Australia since European colonization. J Pl Ecol 5:109–120

    Article  Google Scholar 

  • Breuer L, Ekchardt K, Frede H-G (2003) Plant parameters values for models in temperate climates. Ecol Modelling 169:237–293

    Article  Google Scholar 

  • Brom J, Pokorný J (2009) Temperature and humidity characteristics of two willow stands, a peaty meadow and a drained pasture and their impact on landscape functioning. Boreal Environm Res 14:389–403

    Google Scholar 

  • Bruijnzeel LA (1990) Hydrology of moist tropical forests and effects of conversion: a state of knowledge. UNESCO, Paris and Vrije Universiteit, Amsterdam, The Netherlands

  • Brunt D (1932) Notes on radiation in the atmosphere. Quart J Roy Meteorol Soc 58:389–420

    Article  Google Scholar 

  • Brutsaert W (1975) On a derivable formula for long-wave radiation from clear skies. Water Resources Res 11:742–744

    Article  Google Scholar 

  • Brutsaert W (1982) Evaporation into the atmosphere: theory, history and applications. D. Reidel Publishing Co, Dordrecht, The Netherlands

    Book  Google Scholar 

  • Budyko MI (1974) Climate and life. Academic, New York

    Google Scholar 

  • Burba GG, Verma SB, Kim J (1999) Surface energy fluxes of Phragmites australis in a prairie wetland. Agric Forest Meteorol 94:31–51

    Article  Google Scholar 

  • Burba GG, Verma SB (2005) Seasonal and interannual variability in evapotranspiration of native tallgrass prairie and cultivated wheat ecosystems. Agric Forest Meteorol 135:190–201

    Article  Google Scholar 

  • Burke IC, Yonker CM, Parton WJ, Cole CV, Flach K, Schimel DS (1989) Texture, climate, and cultivation effects on soil organic-matter content in us grassland soils. Soil Sci Soc Amer J 53:800–805

    Article  Google Scholar 

  • Burkett VR, Wilcox DA, Stottlemyer R, Barrow W, Fagre D, Baron J, Price J, Nielsen JL, Allen CD, Peterson DL, Ruggerone G, Doyle T (2005) Nonlinear dynamics in ecosystems response in climatic change: case studies and policy implications. Ecol Complex 2:357–394

    Article  Google Scholar 

  • Calder IR, Reid I, Nisbet TR, Green JC (2003) Impact of lowland forests in England on water resources: application of the hydrological land use change (HYLUC) model. Water Resources Res 39:6-1–6-10

  • Campbell DI, Williamson JL (1997) Evaporation from a raised peat bog. J Hydrol 193:142–160

    Article  Google Scholar 

  • Campra P, Garcia M, Canton Y, Palacios-Orueta A (2008) Surface temperature cooling trends and negative radiative forcing due to land use change toward greenhouse farming in southeastern Spain. J Geophys Res 113

  • Čermák J, Kučera J (1990) Scaling up transpiration data between trees, stands and watersheds. Silva Carelica 15:101–120

    Google Scholar 

  • Čermák J, Kučera J, Nadezhdina N (2004) Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees 18:529–546

  • Čermák J, Kučera J, Zídek V, Penka M (1983) Water relations of crack willow (Salix fragilis L.) in Mokre louky near Třeboň (in Czech) In Jeník J, Květ J (eds) Studia zaplavovaných ekosystémů u Třeboně. Studie CSAV 4, Academia Praha, pp 97–103

  • Čermák J, Nadezhdina (2000) Water relations in mixed versus pure stands. In Hasenauer H (eds) Proceedings of the International Conference Forest Ecosystem Restoration, Ecological and Economical Impacts of Restoration Processes in Secondary Coniferous Forests. Vienna, pp 70–76

  • Čermák J, Prax A (2001) Water balance of floodplain forests in southern Moravia considering rooted and root-free compartments under contrasting water supply and its ecological consequences. Ann Sci Forest 58:1–12

    Article  Google Scholar 

  • Čermák J, Prax A (2003) Transpirace a balance vody v lužním lese. In Hydroekologie mokřadu Kančí obora. Lesy České Republiky, pp 39–43 (In Czech)

  • Čermák J, Prax A (2007) Water and its influence on the function stability of floodplain forests in southern Moravia. In Vancura K (eds) Forests and water in the heart of Europe. Ministry of Agriculture of the Czech Republic and Institute of Forest Management, Brandýs nad Labem, pp 243–251

  • Chagnon FJF, Bras RL (2005) Contemporary climate change in the Amazon. Geophys Res Letters 32:L13703

    Article  Google Scholar 

  • Costa MH, Foley JA (1997) Water balance of the Amazon Basin: dependence on vegetation cover and canopy conductance. J Geophys Res 102:23973–23989

    Article  CAS  Google Scholar 

  • Coulson KL, Reynolds WD (1971) The spectral reflectance of natural surfaces. J Appl Meteorol 10:1285–1295

    Article  Google Scholar 

  • Cramer WP, Leemans R (1993) Assesing impact of climate change on vegetation using climate classification systems. In Solomon et al. (eds) Vegetation dynamics and global change. Springer Science and Business Media, Dordrecht, pp 190–217

  • Cudlin P, Seják J, Pokorný J, Albrechtová J, Bastian O, Marek M (2013) Forest ecosystem services under climate change and air pollution. In Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen JP, Wieser G, Paoletti E (eds) Climate change, air pollution and global challenges, understanding and perspectives from forest research. Elsevier Ltd, pp 521–546

  • Cuf AD, Fisch G, Hodnett MG (1995) The albedo of Amazonian forest and rangeland. J Climate 8:1544–1554

    Article  Google Scholar 

  • Davidson EA, Ackerman IL (1993) Changes in soil carbon inverntories following cultivation of previous untilled soils. Biogeochemistry 20:161–193

    Article  CAS  Google Scholar 

  • Dawson TE, Burgess SSO, Tu KP, Oliveira RS, Santiago LS, Fisher JB, Simonin KA, Ambrose AR (2007) Nighttime transpiration in woody plants from contrasting ecosystems. Tree Physiol 27:561–575

    Article  PubMed  Google Scholar 

  • De Vries DA (1963) Thermal properties of soils. In van Wijk WR (eds) Physics of plant environment. North-Holland Publishing Company, The Netherlands, pp 210–235

    Google Scholar 

  • Dickinson RE, Henderson-Sellers A (1988) Modeling tropical deforestation – a study of GCM land surface parametrizations. Quart J Roy Meteorol Soc 114:439–462

    Article  Google Scholar 

  • Dong A, Grattan SR, Carroll JJ, Prashar CRK (1992) Estimation of daytime net-radiation over well-watered grass. J Irrig Drain Engin 118:466–479

    Article  Google Scholar 

  • Doorenbos J, Pruitt WO (1977) Guidelines for predicting crop water requirements. FAO Irrigation and Drainage Paper 24, Rome, Italy

  • Dorman JL, Sellers PJ (1989) A global climatology of albedo, roughness length and stomatal-resistance for atmospheric general-circulation models as represented by the simple biosphere model (Sib). J Appl Meteorol 28:833–855

    Article  Google Scholar 

  • Duffie JA, Beckman WA (1991) Solar engineering of thermal processes. Ed. 2, Wiley-Interscience, New York

  • Eckhardt K, Breuer L, Frede HG (2003) Parameter uncertainty and the significance of simulated land use change effects. J Hydrol 273:164–176

    Article  Google Scholar 

  • Eiseltová M, Pokorný J, Hesslerová P, Ripl W (2012) Evapotranspiration – a driving force in landscape sustainability. In Irmak A (eds) Evapotranspiration – remote sensing and modeling. InTech, Croatia, pp 305–328

    Google Scholar 

  • Ellert BH, Gregorovich EG (1996) Storage of carbon, nitrogen and phosphorus in cultivated and adjacent forested soils of Ontario. Soil Sci 161:587–603

    Article  CAS  Google Scholar 

  • Eltahir EAB, Bras RL (1994) Sensitivity of regional climate to deforestation in the Amazon Basin. Advances Water Resources 17:101–115

    Article  Google Scholar 

  • Esau IN, Lyons TJ (2002) Effect of sharp vegetation boundary on the convective atmospheric boundary layer. Agric Forest Meteorol 114:3–13

    Article  Google Scholar 

  • Eulenstein F, Lesny J, Chojnicki BH, Kedziora A, Olejnik J (2005) Analysis of the interrelation between the heat balance structure, type of plant cover and weather conditions. Int Agrophys 19:125–130

    Google Scholar 

  • Falkenmark M, Rockstrom J (2004) Balancing water for man and nature: the new approach to ecohydrology. EarthScan, UK

    Google Scholar 

  • Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE, Meehl GA, Washington WM (2005) The importance of land-cover change in simulating future climates. Science 310:1674–1678

    Article  CAS  PubMed  Google Scholar 

  • Field CB, Jackson RB, Mooney HA (1995) Stomatal responses to increased CO2 – implications from the plant to the global-scale. Pl Cell Environm 18:1214–1225

    Article  Google Scholar 

  • Fitzgerald PD (1974) The estimation of soil moisture deficits by Penman's and Thornthwaite's method in Mid Canterbury. J Hydrol 13:32–40

    Google Scholar 

  • Fritschen LJ (1967) Net and solar radiation relations over irrigated field crops. Agric Meteorol 4:55–62

    Article  Google Scholar 

  • Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S (2004) Terrestrial vegetation and water balance – hydrological evaluation of a dynamic global vegetation model. J Hydrol 286:249–270

    Article  CAS  Google Scholar 

  • Gordon LJ, Peterson GD, Bennett EM (2008) Agricultural modifications of hydrological flows create ecological surprises. Trends Ecol Evol 23:211–219

    Article  PubMed  Google Scholar 

  • Goulden ML, Litvak M, Miller SD (2007) Factors that control Typha marsh evapotranspiration. Aquatic Bot 86:97–106

    Article  Google Scholar 

  • Gueymard CA (2004) The sun's total and spectral irradiance for solar energy applications and solar radiation models. Solar Energy 76:423–453

    Article  Google Scholar 

  • Gupta S (2011) Demystifying ‘tradition’: the politics of rainwater harvesting in rural Rajasthan, India. Water Alternatives 4:347–364

    Google Scholar 

  • Gupta VVSR, Germida JJ (1988) Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation. Soil Biol Biochem 20:777–786

    Article  CAS  Google Scholar 

  • Hagemann S, Chen C, Haerter JO, Heinke J, Gerten D, Piani C (2011) Impact of a statistical bias correction on the projected hydrological changes obtained from three gcms and two hydrology models. J Hydrometeorol 12:556–578

    Article  Google Scholar 

  • Harrison RM, Hester RE (2014) Geoengineering of the climate system. Royal Society of Chemistry, USA

    Book  Google Scholar 

  • Headley TR, Davison L, Huett DO, Muller R (2012) Evapotranspiration from subsurface horizontal flow wetlands planted with Phragmites australis in sub-tropical Australia. Water Res 46:345–354

    Article  CAS  PubMed  Google Scholar 

  • Heijmans MMPD, Arp WT, Chapin FS (2004) Carbon dioxide and water vapour exchange from understory species in boreal forest. Agric Forest Meteorol 123:135–147

    Article  Google Scholar 

  • Herbst M, Kappen L (1999) The ratio of transpiration versus evaporation in a reed belt as influenced by weather conditions. Aquatic Bot 63:113–125

    Article  Google Scholar 

  • Hesslerová P (2009) Landscape functioning assessment based on radiation temperature distribution. AUC Geographica 1–2:63–75

    Google Scholar 

  • Hesslerová P, Pokorný J, Brom J, Rejsková-Prochazkova A (2013) Daily dynamics of radiation surface temperature of different land cover types in a temperate cultural landscape: Consequences for the local climate. Ecol Engin 54:145–154

    Article  Google Scholar 

  • Hojdová M, Hais M, Pokorný J (2005) Microclimate of a peat bog and of the forest in different states of damage in the Šumava National Park. Silva Gabreta 11:13–24

    Google Scholar 

  • Horton RE (1931) The field, scope and status of the science of hydrology. Trans Amer Geophys Union 12:189–202

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson SA (2001) Climate change 2001: the scientific basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY

    Google Scholar 

  • Hurtt GC, Frolking S, Fearon MG, Moore B, Shevliakova E, Malyshev S, Pacala SW, Houghton RA (2006) The underpinnings of land-use history: three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands. Global Change Biol 12:1208–1229

    Article  Google Scholar 

  • Huryna H, Brom J, Pokorný J (2014) The importance of wetlands in the energy balance of an agricultural landscape. Wetlands Ecol Managem 22:363–381

    Article  Google Scholar 

  • Huryna H, Pokorný J (2010) Comparison of reflected solar radiation, air temperature and relative air humidity in different ecosystems: from fishponds and wet meadows to concrete surface. In Vymazal J (eds) Water and nutrient management in natural and constructed wetlands. Springer, The Netherlands, pp 308–326

    Google Scholar 

  • Hussain J, Hussain I, Arif M (2014) Water resources management: traditional technology and communities as part of the solution. Proc IAHS 364:236–242

    Article  Google Scholar 

  • Hutjes RWA, Kabat P, Running SW, Shuttleworth WJ, Field C, Bass B, Dias MAFD, Avissar R, Becker A, Claussen M, Dolman AJ, Feddes RA, Fosberg M, Fukushima Y, Gash JHC, Guenni L, Hoff H, Jarvis PG, Kayane I, Krenke AN, Liu C, Meybeck M, Nobre CA, Oyebande L, Pitman A, Pielke RA, Raupach M, Saugier B, Schulze CJ, Sellers PJ, Tenhunen JD, Valentini R, Vorosmarty CJ (1998) Biospheric aspects of the hydrological cycle – preface. J Hydrol 212:1–21

    Article  Google Scholar 

  • Idso SB (1981) A set of equations for full spectrum and 8-Mu-M to 14-Mu-M and 10.5-Mu-M to 12.5-Mu-M thermal-radiation from cloudless skies. Water Resources Res 17:295–304

    Article  Google Scholar 

  • Inman-Bamber NG, McGlinchey MG (2003) Crop coefficients and water-use estimates for sugarcane based on long-term Bowen ratio energy balance measurements. Field Crops Res 83:125–138

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds). Contribution of working group I to the gourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V Midgley PM (eds) Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • IPCC (2014) Summary for policymakers In Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the fifth assesment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 1–31

  • Jara J, Stockle CO, Kjelgaard J (1998) Measurement of evapotranspiration and its components in a corn (Zea Mays L.) field. Agric Forest Meteorol 92:131–145

    Article  Google Scholar 

  • Jasechko S, Sharp ZD, Gibson JJ, Birks SJ, Yi Y, Fawcett PJ (2013) Terrestrial water fluxes dominated by transpiration. Nature 496:347–350

    Article  CAS  PubMed  Google Scholar 

  • Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. ASCE manuals and reports on engineering practice No. 70, ASCE, New York

  • Jurgensen MF, Harvey AE, Graham RT, PageDumroese DS, Tonn JR, Larsen MJ, Jain TB (1997) Impacts of timber harvesting on soil organic matter, nitrogen, productivity, and health of Inland Northwest forests. Forest Sci 43:234–251

    Google Scholar 

  • Kjaersgaard JH, Plauborg FL, Hansen S (2007) Comparison of models for calculating daytime long-wave irradiance using long term data set. Agric Forest Meteorol 143:49–63

    Article  Google Scholar 

  • Koster RD, Milly PCD (1997) The interplay between transpiration and runoff formulations in land surface schemes used with atmospheric models. J Climate 10:1578–1591

    Article  Google Scholar 

  • Kravcik M, Pokorný J, Kohutiar J, Kovac M, Toth E (2008) Water for the recovery of the climate: a new water paradigm. Typopress-publishing house, Košice

    Google Scholar 

  • Kučerová A, Pokorný J, Radoux M, Němcová M, Cadelli D, Dušek J (2001) Evapotranspiration of small constructed wetlands planted with ligneous species. In Vymazal J (eds) Transformation of nutrients in natural and constructed wetlands. Backhuys Publishers, Leiden, The Netherlands, pp 413–427

    Google Scholar 

  • Kuchment LC (2004) The hydrological cycle and human impact on it. In Hoekstra AY, Savenije HHG (eds) Water resource management. Eolss Publishers, Oxford

    Google Scholar 

  • Kume T, Tanaka N, Kuraji K, Komatsu H, Yoshifuji N, Saitoh TM, Suzuki M, Kumagai T (2011) Ten-year evapotranspiration estimates in a Bornean tropical rainforest. Agric Forest Meteorol 151:1183–1192

    Article  Google Scholar 

  • Květ J (1973) Transpiration of South Moravian Phragmites communis littoral of the Nesyt Fishpond. Studies Cz Acad Sci 15:143–146

    Google Scholar 

  • Lafleur PM, Hember RA, Admiral SW, Roulet NT (2005) Annual and seasonal variability in evapotranspiration and water table at a shrub-covered bog in southern Ontario, Canada. Hydrolog Processes 19:3533–3550

    Article  Google Scholar 

  • Lawrence D, Vandecar K (2015) Effects of tropical deforestation on climate and agriculture. Nature Clim Change 5:27–36

    Article  Google Scholar 

  • Lenihan JM, Drapek R, Bachelet D, Neilson RP (2003) Climate change effect on vegetation distribution, carbon, and fire in California. Ecol Applic 13:1667–1681

    Article  Google Scholar 

  • Levia DF, Frost EE (2003) A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. J Hydrol 274:1–29

    Article  CAS  Google Scholar 

  • Li YJ, Zhou L, Xu ZZ, Zhou GS (2009) Comparison of water vapour, heat and energy exchanges over agricultural and wetland ecosystems. Hydrol Processes 23:2069–2080

    Article  Google Scholar 

  • Liang XZ, Xu M, Gao W, Kunkel K, Slusser J, Dai YJ, Min QL, Houser PR, Rodell M, Schaaf CB, Gao F (2005) Development of land surface albedo parameterization based on Moderate Resolution Imaging Spectroradiometer (MODIS) data. J Geophys Res 110:D11107

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG (2007) Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol Earth Syst Sci 11:1013–1033

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG (2010) The biotic pump: condensation, atmospheric dynamics and climate. Int J Water 5:365–385

  • Makarieva AM, Gorshkov VG, Sheil D, Nobre AD, Li B-L (2010) Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics. Atmos Chem Phys Discuss 10:24015–24052

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG, Li BL (2013) Revisiting forest impact on atmospheric water vapor transport and precipitation. Theor Appl Climatol 111:79–96

    Article  Google Scholar 

  • Makarieva A, Gorshkov V, Wilderer PA (2016) What can we learn from natural ecosystems to avoid a civilization breakdown? In Wilderer PA, Grambow M (eds) Global stability through decentralization? In search for the right balance between central and decentral solutions. Series Strategies for Sustainability, Springer International Publishing Switzerland, pp 83–104

  • Masson V, Champeaux J-L, Chauvin F, Meriguet C, Lacaze R (2003) A global database of land surface parameters at 1-km resolution in meteorological and climate models. J Clim 16:1261–1282

    Article  Google Scholar 

  • McGuffie K, Henderson-Sellers A, Zhang H, Durbridge TB, Pitman AJ (1995) Global climate sensitivity to tropical deforestation. Global Planet Change 10:97–128

    Article  Google Scholar 

  • Merta M, Seidler C, Fjodorowa T (2006) Estimation of evaporation components in agricultural crops. Biologia 61:S280–S283

    Article  Google Scholar 

  • Meyer WS, Smith DJ, Shell G (1999) Estimating reference evaporation and crop evapotranspiration from weather data and crop coefficients. CSIRO Land and Water, Technical report 34/98

  • Michaels PJ (1998) Global deception: the exaggeration of the global warming threat. Center for the Study of American Business, Washington University, USA

  • Miller DH (1981) Energy at the surface of the Earth. Academic Press, New York, USA

    Google Scholar 

  • Milly PCD (1997) Sensitivity of greenhouse summer dryness to changes in plant rooting characteristics. Geophys Res Letters 24:269–271

    Article  Google Scholar 

  • Mintz Y (1984) The sensitivity of numerically simulated climates to land-surface conditions. In Hougton J (eds) The global climate. Cambridge University Press, New York

    Google Scholar 

  • Mitsch WJ, Hernandez MI (2013) Landscape and climate change threats to wetlands of North and Central America. Aquatic Sci 75:133–149

    Article  CAS  Google Scholar 

  • Monteith JL, Unsworth MH (1990) Principles of environmental physics. Ed. 2, Edward Arnold, London

  • Moore CJ (1976) A comparative study of radiation balance above forest and grassland. Quart J Roy Meteorol Soc 102:889–899

    Article  Google Scholar 

  • Nakai T, Kim Y, Busey RC, Suzuki R, Nagai S, Kobayashi H, Park H, Sugiura K, Ito A (2013) Characteristics of evapotranspiration from a permafrost black spruce forest in interior Alaska. Polar Sci 7:136–148

    Article  Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Muneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563

    Article  CAS  PubMed  Google Scholar 

  • Nicholls N, Collins D, Trewin B, Hope P (2006) Historical instrumental climate data for Australia—quality and utility for palaeoclimatic studies. J Quaternary Sci 21:681–688

    Article  Google Scholar 

  • Nicholls N, Lavery B (1992) Australian rainfall trends during the 20th-century. Int J Climatol 12:153–163

    Article  Google Scholar 

  • Niemela S, Raisanen P, Savijarvi H (2001) Comparison of surface radiative flux parameterizations – Part II. Shortwave radiation. Atmos Res 58:141–154

    Article  Google Scholar 

  • Nobre CA, Sellers PJ, Shukla J (1991) Amazonian deforestation and regional climate change. J Climate 4:957–988

    Article  Google Scholar 

  • Noguchi S, Rahim AN, Ahmad S, Negishi JN, Gomi T, Ahmad CAS (2004) Effect of forest harvesting on tree species composition at riparian zone in a tropical rain forest. In Matsumoto Y, Ueda E, Kobayashi S (eds) Proceedings of the international workshop on the landscape level rehabilitation of degraded tropical forests. FFPRI, Tsukuba, Japan, pp 43–48

    Google Scholar 

  • Oke TR (1978) Boundary layer climate. Methuen and Co., London

    Book  Google Scholar 

  • Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072

    Article  CAS  PubMed  Google Scholar 

  • Overpeck JT, Rind D, Goldberg R (1990) Climate-induced changes in forest disturbance and vegetation. Nature 343:51–53

    Article  Google Scholar 

  • Paltridge WG, Platt CM (1976) Radiative processes in meteorology and climatology. Elsevier, Amsterdam

    Google Scholar 

  • Peacock CE, Hess TM (2004) Estimating evapotranspiration from a reed bed using the Bowen ratio energy balance method. Hydrol Processes 18:247–260

    Article  Google Scholar 

  • Peel MC, McMahon TA, Finlayson BL, Watson FGR (2001) Identification and explanation of continental differences in the variability of runoff. J Hydrol 250:224–240

    Article  Google Scholar 

  • Perez-Garcia M (2004) Simplified modelling of the nocturnal clear sky atmospheric radiation for environmental applications. Ecol Modelling 180:395–406

    Article  Google Scholar 

  • Pielke RA, Avissar R, Raupach M, Dolman AJ, Zeng XB, Denning AS (1998) Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Global Change Biol 4:461–475

    Article  Google Scholar 

  • Pielke RA Pitman A, Niyogi D, Mahmood R, McAlpine C, Hossain F, Goldewijk KK, Nair U, Betts R, Fall S, Reichstein M, Kabat P, de Noblet N (2011) Land use/land cover changes and climate: modeling analysis and observational evidence. Wires Clim Change 2:828–850

    Article  Google Scholar 

  • Pinker RT, Thompson OE, Eck TF (1980) The albedo of a tropical evergreen forest. Quart J Roy Meteorol Soc 106:551–558

    Article  Google Scholar 

  • Pivec J (1992) Seasonal course of albedo as an indicator of leaf development in a floodplain forest. Ekológia ČSFR 11:13–19

    Google Scholar 

  • Pohlker C, Wiedemann KT, Sinha B, Shiraiwa M, Gunthe SS, Smith M, Su H, Artaxo P, Chen Q, Cheng Y, Elbert W, Gilles MK, Kilcoyne ALD, Moffet RC, Weigand M, Martin ST, Pöschl U, Andreae MO (2012) Biogenic potassium salt particles as seeds for secondary organic aerosol in the Amazon. Science 337:1075—1078

    Article  PubMed  CAS  Google Scholar 

  • Pokorný J, Brom J, Čermák J, Hesslerová P, Huryna H, Nadezhdina N, Rejsková A (2010) Solar energy dissipation and tmperature control by water and plants. Int J Water 5:311–337

    Article  Google Scholar 

  • Pokorný J, Hesslerová P, Huryna H, Harper D (2016) Indirect and direct thermodynamic effects of wetland ecosystems on climate. In Vymazal J (eds) Natural and constructed wetlands: nutrients, heavy metals and energy cycling and flow. Springer, 295 pp

  • Pokorný J, Rejsková A (2008) Water cycle management. In Jorgensen E, Fath B (eds) Encyclopedia of ecology 5. Elsevier Science

  • Post WM, Mann LK (1990) Changes in soil organic carbon and nitrogen as a result of cultivation. In Bouwman AE (eds) Soils and the greenhouse effect. John Wiley, Chichester, UK

    Google Scholar 

  • Prata AJ (1996) A new long-wave formula for estimating downward clear-sky radiation at the surface. Quart J Roy Meteorol Soc 122:1127–1151

    Article  Google Scholar 

  • Priban K, Ondok JP (1986) Evapotranspiration of a willow carr in summer. Aquatic Bot 25:203–216

    Article  Google Scholar 

  • Procházka J, Brom J, Štastný J, Pecharová E (2011) The impact of vegetation cover on temperature and humidity properties in the reclaimed area of a brown coal dump. Int J Mining Reclam Environm 25:350–366

    Article  Google Scholar 

  • Raisin G, Bartley J, Croome R (1999) Groundwater influence on the water balance and nutrient budget of a small natural wetland in Northeastern Victoria, Australia. Ecol Engin 12:133–147

    Article  Google Scholar 

  • Rejsková A, Čížková H, Brom J, Pokorný J (2010) Transpiration, evapotranspiration ad energy fluxes in temperate wetland dominated by Phalaris arundinacea under hot summer conditions. Ecohydrology 5:19–27

    Article  Google Scholar 

  • Restrepo NC, Arain MA (2005) Energy and water exchanges from a temperate pine plantation forest. Hydrol Processes 19:27–49

    Article  CAS  Google Scholar 

  • Ripl W (1995) Management of water cycle and energy flow for ecosystem control: the energy- temperature-reaction (ETR) model. Ecol Modelling 78:61–76

    Article  Google Scholar 

  • Ripl W, Eiseltová M (2009) Sustainable land management by restoration of short water cycles and prevention of irreversible matter losses from topsoils. Pl Soil Environm 55:404–410

    Google Scholar 

  • Ripl W, Splechtna K, Brande A, Wolter KD, Janssen T, Ripl W, Ohmeyer C (2004) Final report: funktionale landschaftsanalyse im Albert Rothschild Wildnisgebiet Rothwald. Im Auftrag von LIL verein zur Förderung der landentwicklung und intakter lebensräume) NÖ landesregierung, Österreich, 154 pp

  • Roberts JM, Rosier PTW (1994) Comparative estimates of transpiration of ash and beech forest at a chalk site in southern Britain. J Hydrol 162:229–245

    Article  Google Scholar 

  • Ryszkowski L, Kedziora A (1987) Impact of agricultural landscape structure on energy flow and water cycling. Landscape Ecol 1:85–94

    Article  Google Scholar 

  • Ryszkowski L, Kedziora A (1995) Modification of the effects of global climate change by plant cover structure in an agricultural landscape. Geographia Polonica 65:5–34

    Google Scholar 

  • Sagan C, Toon OB, Pollack JB (1979) Anthropogenic albedo changes and the Earths climate. Science 206:1363–1368

    Article  CAS  PubMed  Google Scholar 

  • Sanchez PA, Logan TJ (1992) Myths and science about the chemistry and fertility of soils in the tropics. SSSA Special Publication No. 29, pp 35–46

    CAS  Google Scholar 

  • Schlesinger WH, Bernhardt (2013) Biogeochemistry: an analasis of global change. Ed 3. Elsevier

  • Schmidt M (2010) Ecological design for climate mitigation in contemporary urban living. Int J Water 5:337–352

    Article  Google Scholar 

  • Schneider ED, Sagan D (2005) Into the cool: energy flow, thermodynamics and life. University of Chicago Press, Chicago

    Google Scholar 

  • Seleshi Y, Zanke U (2004) Recent changes in rainfall and raony days in Ethiopia. Int J Climatol 24:973–983

    Article  Google Scholar 

  • Selinger HH, McElroy WD (1965) Light: physical and biological action. Academic Press, New York

    Google Scholar 

  • Sharma BK (1994) Air pollution. GOEL Publishing house, Meerut

    Google Scholar 

  • Sheil D (2014) How plants water our planet: advances and imperatives. Trends Pl Sci 19:209–211

    Article  CAS  Google Scholar 

  • Shukla J, Nobre C, Sellers P (1990) Amazon deforestation and climate change. Science 247:1322–1325

    Article  CAS  PubMed  Google Scholar 

  • Šmíd P (1975) Evapotranspiration from a reed swamp. J Ecol 63:299–309

    Article  Google Scholar 

  • Snyder PK (2010) The influence of tropical deforestation on the northern hemisphere climate by atmospheric teleconnections. Earth Interact 14:1–34

    Article  Google Scholar 

  • Sondergard SE (2009) Climate balance: a balanced and realistic view of climate change. Tale Pub & Enterprices Llc, USA

    Google Scholar 

  • Sumner DM, Wu Q, Pathak CS (2011) Variability of albedo and utility of the MODIS albedo product in forest wetlands. Wetlands 31:229–237

    Article  Google Scholar 

  • Suryatmojo H, Fujimotob M, Yamakawac Y, Kosugi K, Mizuyamac T (2013) Water balance changes in the tropical rainforest with intensive forest management system. Int J Sustain Human Security 1:56–62

    Google Scholar 

  • Swank WT, Douglass JE (1974) Streamflow greatly reduced by converting deciduous hardwood stands to pine. Science 185:857–859

    Article  CAS  PubMed  Google Scholar 

  • Swank WT, Swift JLW, Douglass JE (1988) Streamflow changes associated with forest cutting, species conversions, and natural disturbances. In Swank WT, Crossley DA (eds) Forest hydrology and ecology at Coweeta. Springer-Verlag, New York, pp 297–312

    Chapter  Google Scholar 

  • Swinbank WC (1963) Long-wave radiation from clear skies. Quart J Roy Meteorol Soc 89:339–34

    Article  Google Scholar 

  • Takebayashi H, Moriyama M (2007) Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Building & Environm 42 :2971–2979

    Article  Google Scholar 

  • Tane H (2006) Restoring watershed systems by converting to natural sequence farming. Proceedings of the First Natural Sequence Farming Workshop, Natural Sequence Farming-Defining the Science and the Practice. Bungendore, NSW, Australia, SRCMA

  • Tanner CB, Pelton WL (1960) Energy balance data, Hancock, Wiscontin. Soil Bull 2:34–36

    Google Scholar 

  • Theurillat J-P, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109

    Article  CAS  Google Scholar 

  • Thom AS (1975) Momentum, mass and heat exchange of plant communities. In Monteith JL (eds) Vegetation and the atmosphere. Academic Press, London, pp 57–109

    Google Scholar 

  • Tributsch H, Čermák J, Nadezhdina N (2005) Kinetic studies on the tensile state of water in trees. J Phys Chem B 109:17693–17707

    Article  CAS  PubMed  Google Scholar 

  • Trimble SW, Weirich FH, Hoag BL (1987) Reforestation and the reduction of water yield on the Southern Piedmont since circa 1940. Water Resources Res 23:425–437

    Article  Google Scholar 

  • Vitorello VA, Cerri CC, Andreux F, Feller C, Victoria RL (1989) Organic-matter and natural c-13 distribution in forested and cultivated oxisols. Soil Sci Soc Amer J 53:773–778

    Article  CAS  Google Scholar 

  • Wang SS (2005) Dynamics of surface albedo of a boreal forest and its simulation. Ecol Modelling 183:477–494

    Article  Google Scholar 

  • Wang ZM, Batelaan O, DeSmedt F (1996) A distributed model for water and energy transfer between soil, plants and atmosphere (WetSpa). Phys Chem Earth 21:189–193

    Article  Google Scholar 

  • Watanabe K, Yamamoto T, Yamada T, Sakuratani T, Nawata E, Noichana C, Stributta A, Higuchi H (2004) Changes in seasonal evapotranspiration, soil water content, and crop coefficients in sugarcane, cassava, and maize fields in Northeast Thailand. Agric Water Managem 67:133–143

    Article  Google Scholar 

  • Wierenga PJ, Nielsen DR, Hagan RM (1969) Thermal properties of a soil based upon field and laboratory measurements. Proc Soil Sci Soc Amer 33:354–360

    Article  Google Scholar 

  • Wiessner A, Stottmeister K, Struckmann N, Jank M (1999) Treating a lignite pyrolysis wastewater in a constructed subsurface flow wetland. Water Res 33:1296–1302

    Article  CAS  Google Scholar 

  • Willmott CJ, Rowe CM, Mintz Y (1985) Climatology of the terrestrial seasonal water cycle. J Climatol 5:589–606

    Article  Google Scholar 

  • Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground water and surface water: a single resource. U.S. Geological Survey Circular 1139, Denver, Colorado

  • Wu JB, Jing YL, Guan DX, Yang H, Niu LH, Wang AZ, Yuan FH, Jin CJ (2013) Controls of evapotranspiration during the short dry season in a temperate mixed forest in Northeast China. Ecohydrology 6:775–782

    Google Scholar 

  • Xue Y, Shukla J (1993) The influence of land-surface propreties on Sahel climate. Part I. Desertification. J Climate 6:2232–2245

  • Yin X (1998) The albedo of vegetated land surface: systems analysis and mathematical modelling. Theor Appl Climatol 60:121–140

    Article  Google Scholar 

  • Zheng XY, Eltahir EAB (1997) The response to deforestation and desertification in a model of West Africa monsoons. Geophys Res Letters 24:155–158

    Article  Google Scholar 

  • Zhou L, Zhou GS (2009) Measurement and modelling of evapotranspiration over a reed (Phragmites australis) marsh in Northeast China. J Hydrol 372:41–47

    Article  Google Scholar 

Download references

Acknowledgments

The work was partly supported by the Institutional Financial Support for Long-term Development of Research Organisation provided by the Ministry of Education, Youth and Sports of the Czech Republic and the Czech-Norwegian project ‘Conservation and wise use of wetlands in the Czech Republic’. The authors express their gratitude to referees for their critical approach, explanatory comments and recommendations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Huryna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huryna, H., Pokorný, J. The role of water and vegetation in the distribution of solar energy and local climate: a review. Folia Geobot 51, 191–208 (2016). https://doi.org/10.1007/s12224-016-9261-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-016-9261-0

Keywords

Navigation