Skip to main content
Log in

Explaining species distributions by traits of bryophytes and vascular plants in a patchy landscape

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

The species pool theory helps us understand species distributions at different geographical scales. In theory, species pools consist of species passing the filters between different geographical scales. Filters of dispersal and environment act between the regional and local pools, while filters of biotic interactions act between the local and the community pools. We studied bryophytes and vascular plants restricted to rich (calcareous) fens that occur as patches in a forested landscape. We then examined their frequencies and abundances at the local and regional scales and related the results to traits important for dispersal and competition. Our results show that weft-forming bryophytes and vascular plants with far-creeping rhizomes have higher local frequency than predicted from their regional frequency. Dispersal traits did not explain any variation in the distributions. This indicates that environmental and biotic filters are more important than dispersal limitation at the regional scale, and that clonal expansion is the most important factor for high frequency and abundance at the local scale in these nutrient poor habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser B 57:289–300

    Google Scholar 

  • Bisang I, Ehrlén J, Hedenäs L (2004) Mate limited reproductive success in two dioicous mosses. Oikos 104:291–298

    Article  Google Scholar 

  • Boutin C, Keddy P A (1993) A functional classification of wetland plants. J Veg Sci 4:591–600

    Article  Google Scholar 

  • Brückmann SV, Krauss J, Steffan-Dewenter I (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47:799–809

    Article  Google Scholar 

  • Chust G, Pérez-Haase A, Chave J, Pretus JL (2006) Floristic patterns and plant traits of Mediterranean communities in fragmented habitats. J Biogeogr 33:1235–1245

    Article  Google Scholar 

  • Cornwell WK, Ackerly DD (2010) A link between plant traits and abundance: evidence from coastal California woody plants. J Ecol 98:814–821

    Article  Google Scholar 

  • Crawley MJ (2005) Statistics: An Introduction using R. Wiley

  • de Bello F, Price JN, Münkemüller T, Liira J, Zobel M, Thuiller W, Gerhold P, Götzenberger L, Lavergne S, Lepš J, Zobel K, Pärtel M. (2012) Functional species pool framework to test for biotic effects on community assembly. Ecology 93:2263–2273

    Article  PubMed  Google Scholar 

  • Devictor V, Julliard R, Jiguet F (2008) Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117:507–514

    Article  Google Scholar 

  • Eriksson L, Henkel H (2002) Geofysik. In Fredén C (ed) Berg och jord Ed 3. Sveriges nationalatlas, pp 76–101

  • Granath G, Strengbom J, Rydin H (2010) Rapid ecosystem shifts in peatlands: linking plant physiology and succession. Ecology 91:3047–3056

    Article  PubMed  Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (2007) Comparative plant ecology: a functional approach to common British species. Castlepoint Press

  • Grubb PJ (1977) The maintenance of species richness in plant communities: the importance of the regeneration niche. Biol Rev 52:107–145

    Article  Google Scholar 

  • Gunnarsson U, Malmer N, Rydin H (2002) Dynamics or constancy in Sphagnum dominated mire ecosystems? A 40-year study. Ecography 25:685–704

    Article  Google Scholar 

  • Hájek M, Tichý L, Schamp BS, Zelený D, Roleček J, Hájková P, Apostolova I, Dítě D (2007) Testing the species pool hypothesis for mire vegetation: exploring the influence of pH specialists and habitat history. Oikos 116:1311–1322

    Article  Google Scholar 

  • Hájkova P, Hájek M (2004) Bryophyte and vascular plant responses to base-richness and water level gradients in Western Carpathian Sphagnum-rich mires. Folia Geobot 39:335–351

    Article  Google Scholar 

  • Hallingbäck T, Hedenäs L, Weibull H (2006) Ny checklista för Sveriges mossor. Sven Bot Tidskr 100:96–148

    Google Scholar 

  • Hedenäs L (2003) The European species of the Calliergon-Scorpidium-Drepanocladus complex, including some related or similar species. Meylania 28:1–116

    Google Scholar 

  • Hill MO, Preston CD, Bosanquet SD, Roy DB (2007) BRYOATT – Attributes of British and Irish mosses, liverworts and hornworts with information on native status, size, life form, life history, geography and habitat. CEH Publication

  • Hill MO, Preston CD, Roy DB (2004) PLANTATT – Attributes of British and Irish plants: status, size, life history, geography and habitats. CEH Publication

  • Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89:1510–1520

    Article  PubMed  Google Scholar 

  • Holyoak M, Leibold MA, Mouquet NM, Holt RD, Hoopes MF (2005) Metacommunities: A framework for large-scale community ecology. In Holyoak M, Leibold MMA, Holt RD (eds) Metacommunities – Spatial dynamics and ecological communities. The University of Chicago Press, pp 1–32

  • Horsák M, Hájek M, Spitale D, Hájková P, Dítě D, Nekola JC (2012) The age of island-like habitats impacts habitat specialist species richness. Ecology 93:1106–1114

    Article  PubMed  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Sym 22:415–427.

    Article  Google Scholar 

  • Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimeš L et al. (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274

    Article  Google Scholar 

  • Kuhry P, Nicholson BJ, Gignac LD, Vitt DH, Bayley SE (1993) Development of Sphagnum-dominated peatlands in boreal continental Canada. Can J Bot 71:10–22

    Article  Google Scholar 

  • Laliberté E, Shipley B (2011) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-11

  • Latzel V, Klimešová J, Doležal J, Pyšek P, Tackenberg O, Prach K (2011) The association of dispersal and persistence traits of plants with different stages of succession in Central European man-made habitats. Folia Geobot 46:289–302

    Article  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF et al. (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Löbel S, Rydin H (2010) Trade-offs and habitat constraints in the establishment of epiphytic bryophytes. Funct Ecol 24:887–897

    Article  Google Scholar 

  • Löbel S, Snäll T, Rydin H (2009) Mating system, reproduction mode and diaspore size affect metacommunity diversity. J Ecol 97:176–185

    Article  Google Scholar 

  • Löfgren A, Jerling L (2002) Species richness, extinction and immigration rates of vascular plants on islands in the Stockholm archipelago, Sweden, during a century of ceasing management. Folia Geobot 37:297–308

    Article  Google Scholar 

  • Lönnell N (2014) Dispersal of bryophytes across landscapes. Ph.D. thesis, Stockholm University

  • Mayfield MM, Levine JM 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093

    Article  PubMed  Google Scholar 

  • Mossberg B, Stenberg L (2003) Den nya nordiska floran. Wahlström & Widstrand

  • Økland RH (1994) Patterns of bryophyte associations at different scales in a Norwegian boreal spruce forest. J Veg Sci 5:127–138

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt K, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) vegan: Community Ecology Package. R package version 2.0-10. Available at http://CRAN.R-project.org/package=vegan

  • Pärtel M, Zobel M, Zobel K, van der Maarel E (1996) The species pool and its relation to species richness: evidence from Estonian plant communities. Oikos 75:111–117

    Article  Google Scholar 

  • Podani J, Schmera D (2006) On dendrogram-based measures of functional diversity. Oikos 115: 179–185

    Article  Google Scholar 

  • Pulliam HR (2000) On the relationship between niche and distribution. Ecol Lett 3:349–361

    Article  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Rydin H (1986) Competition and niche separation in Sphagnum. Can J Bot 64:1817-1824

    Article  Google Scholar 

  • Rydin H (2009) Population and community ecology of bryophytes. In Shaw AJ, Goffinet B (eds), Bryophyte Biology. Ed 2. Cambridge University Press, pp 393–444

  • Rydin H, Jeglum JK (2013) The biology of peatlands. Ed 2. Oxford University Press

  • Salisbury E (1974) Seed size and mass in relation to environment. Proc R Soc Lond B 186:83–88

    Article  Google Scholar 

  • Schamp B, Hettenbergerová E, Hájek M (2011) Testing community assembly predictions for nominal and continuous plant traits in species-rich grasslands. Preslia 83:329–346

    Google Scholar 

  • SMHI 2011. Klimatdata. SMHI. Available at http://www.smhi.se/klimatdata

  • Soons MB, van der Vlugt C, van Lith B, Heil GW, Klaassen M (2008) Small seed size increases the potential for dispersal of wetland plants by ducks. J Ecol 96:619–627

    Article  Google Scholar 

  • Sosnová M, van Diggelen R, Macek P, Klimešová J (2011) Distribution of clonal growth traits among wetland habitats. Aquat Bot 95:88–93

    Article  Google Scholar 

  • Sundberg S (2006) Åtgärdsprogram för bevarande av rikkärr [Action plan for Swedish rich fens]. Naturvårdsverket, Rapport 5601, Stockholm

  • Sundberg S (2012) Quick target vegetation recovery after restorative shrub removal and mowing in a calcareous fen. Rest Ecol 20:331–338

    Article  Google Scholar 

  • Sundberg S, Hansson J, Rydin H (2006) Colonization of Sphagnum on land uplift islands in the Baltic Sea: time, area, distance and life history. J Biogeogr 33:1479–1491

    Article  Google Scholar 

  • Sundberg S, Rydin H (2002) Habitat requirements for establishment of Sphagnum from spores. J Ecol 90:268–278

    Article  Google Scholar 

  • Svensson BM, Rydin H, Carlsson BÅ (2013) Clonality in the plant community. In van der Maarel E, Franklin J (eds), Vegetation ecology. Wiley-Blackwell, pp 141–163

  • Thomson FJ, Moles AT, Auld TD, Kingsford RT (2011) Seed dispersal distance is more strongly correlated with plant height than with seed mass. J Ecol 99:1299–1307

    Article  Google Scholar 

  • Vitt DH, Slack NG (1975) An analysis of the vegetation of Sphagnum-dominated kettle-hole bogs in relation to environmental gradients. Canad J Bot 53:332–359

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Ann Rev Ecol Syst 33:125–159

    Article  Google Scholar 

  • Zobel M (1997) The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends Ecol Evol 12:266–269

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was obtained from the Swedish Research Council Formas and the Swedish Environmental Protection Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Håkan Rydin.

Appendices

Appendix 1

Table 4 Trait values, frequencies, abundance and niche breadth for bryophytes in rich fens. ML – moss or liverworth; LF – life form; SP – spore production; SS – spore size; Reg – regional frequency (mean ± SE); Loc – local frequency; Com – community abundance.

Appendix 2

Table 5

Table 5 Trait-values, frequencies, abundance and niche breadth for vascular plants in rich fens. LF – life form, SM – seed or spore mass; CH – canopy height; SLA – specific leaf area; Reg – regional frequency (mean ± SE); Loc – local frequency; Com – community abundance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udd, D., Mälson, K., Sundberg, S. et al. Explaining species distributions by traits of bryophytes and vascular plants in a patchy landscape. Folia Geobot 50, 161–174 (2015). https://doi.org/10.1007/s12224-015-9219-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-015-9219-7

Keywords

Navigation