Skip to main content

Advertisement

Log in

Interactions, Environmental Sorting and Chance: Phylostructure of a Tropical Forest Assembly

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Density dependence, environmental sorting and chance have been discussed for the purpose of understanding, predicting and explaining the species richness, composition and structural parameters of living communities. Different ecological mechanisms occur individually in an overlapping manner, so the structure of each local community is influenced by an independent mixture of these factors. To identify which of these factors prevails in organizing the species-rich tree community from 100 plots of 10 × 10 m in a primary forest patch (the Forest of Seu Nico – FSN, from the Atlantic Forest domain), we analyzed species-environment correlations via canonical correspondence analysis and identified two different pedo-environments. We analyzed the community’s phylogenetic structure using Phylocom 4.2 software to calculate the net relatedness index (NRI) and the nearest taxon index (NTI). Furthermore, we partitioned the total phylogenetic diversity into independent α and β components (ΠST). To reveal the overlap of ecological mechanisms such as neutrality, environmental filtering and density-dependent factors, we analyzed the phylogenetic structure in both pedo-environments. The species-environment correlations observed in the FSN are weak in comparison with those found in other studies, although the permanent plot presents a short environmental gradient, dividing the plot into an upper, more acidic hillside and a lower, more fertile bottom. The overall phylogenetic structure of the FSN community shows strong and significant phylogenetic overdispersion. This overdispersion indicates that density-dependent factors, such as interspecific competition, play an important role in maintaining the species richness and community structure in megadiverse ecosystems such as the FSN when we assume traits to be conserved within evolutionary lineages. The NRI and NTI are correlated positively with the soil pH and negatively with the soil’s aluminum concentration, so the bottom plots show higher phylogenetic overdispersion and lower ΠST values than the hillside plots. This pattern can be explained by the greater importance of environmental filters in more acidic soils that form less favorable habitats, while the influence of competition and therefore also the rate of competitive exclusion are higher in the more favorable, less acidic plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APG (Angiosperm Phylogeny Group) III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Baldeck CA, Harms KE, Yavitt YB, John R, Turner BL, Valencia R, Navarrete H, Davies SJ, Chuyong GB, Kenfack D, Thomas DW, Madawala S, Gunatilleke N, Gunatilleke S, Bunyavejchewin S, Kiratiprayoon S., Yaacob A, Nur Supardi MA, Dalling JW (2013) Soil resources and topography shape local tree community structure in tropical forests. Proc Roy Soc B 2013 280, 20122532, doi:10.1098/rspb.2012.2532

    Article  Google Scholar 

  • Baraloto C, Hardy OJ, Paine CET, Dexter KG, Cruaud C, Dunning LT, Gonzalez M-A, Molino J-F, Sabatier D, Savolainen V, Chave J (2012) Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. J Ecol 100:690–701

    Article  Google Scholar 

  • Botrel RT, Oliveira-Filho AT, Rodrigues LA, Curi N (2002) Influência do solo e topografia sobre as variações da composição florística e estrutura da comunidade arbóreo-arbustiva de uma Floresta Estacional Semidecidual em Ingaí, MG (Influence of soils and topography on the variations of species composition and structure of the community of trees and shrubs of a tropical semideciduous forest in Ingaí, southeastern Brazil). Brasil Rev Bot 25:195–213

    Article  Google Scholar 

  • Campos EP, Silva AF, Meira Neto JAA, Martins SV (2006) Floristica e estrutura horizontal da vegetação arbórea de uma ravina em um fragmento florestal no município de Viçosa, MG (Floristics and horizontal structure of the tree vegetation of a ravine in a forest fragment in the municipality of Viçosa, MG). R Árvore 30:1045–1054

    Article  Google Scholar 

  • Carvalho DAC, Oliveira-Filho AT, Vilela EA, Curi N, van den Berg E, Fontes MAL, Botezelli L (2005) Distribuição de espécies arbóreo-arbustivas ao longo de um gradiente de solos e topografia em um trecho de floresta ripária do Rio São Francisco em Três Marias, MG, Brasil (Distribution of tree and shrub species along a gradient of soils and topography in a strip of riparian forest of the São Francisco river in Três Marias, MG, Brazil). Brasil Rev Bot 28:329–345

    Article  Google Scholar 

  • Cavender-Bares J, Keen A, Miles B (2006) Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87:S109–S122

    Article  PubMed  Google Scholar 

  • Cavender-Bares J, Ackerly DD, Baum DA, Bazzaz FA (2004) Phylogenetic overdispersion in Floridian oak communities. Amer Naturalist 163:823–843

    Article  CAS  Google Scholar 

  • Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715

    Article  PubMed  Google Scholar 

  • Chave J (2009) Competition, Neutrality, and Community Organization. In Levin SA (ed) The Princeton guide to ecology. Princeton University Press, Princeton, pp 264–273

    Google Scholar 

  • Chave J, Alonso D, Etienne RS (2006) Comparing models of species abundance. Nature 441:E1

    Article  PubMed  CAS  Google Scholar 

  • Chave J, Riera B, Dubois MA (2001) Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability. J Trop Ecol 17:79–96

    Article  Google Scholar 

  • Clayton DH, Bush SE (2006) The role of body size in host specificity: Reciprocal transfer experiments with feather lice. Evolution 60:2158–2167

    Article  PubMed  Google Scholar 

  • Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans, Ser B 345:101–108

    Article  CAS  Google Scholar 

  • Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain Forest trees. In Boer PJ, Gradwell GR (eds) Dynamics of populations. Center for Agricultural Publishing and Documentation, Wageningen, pp 198–310

    Google Scholar 

  • Davies TJ, Barralough TG, Chase MW, Soltis PS, Soltis DE, Savolainen V (2004) Darwin’s abominable mystery: Insights from a supertree of the angiosperms. Proc Natl Acad Sci, USA 101:1904–1909

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Diamond JM (1975) Assembly of species communities. In Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard University, Press, Cambridge, Massachusetts, pp 342–444

    Google Scholar 

  • Díaz S, Hodgson JG, Thompson K., Cabido M, Cornelissen JHC et al. (2004) The plant traits that drive ecosystems: Evidence from three continents. J Veg Sci 15:295–304

    Article  Google Scholar 

  • Elton CS (1927) Animal ecology. Sidgwick and Jackson, London

    Google Scholar 

  • Emerson BC, Gillespie RG (2008) Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol Evol 23:619–630

    Article  PubMed  Google Scholar 

  • Ernest SKM, White EP, Brown JH (2009) Changes in a tropical forest support metabolic zero-sum dynamics. Ecol Lett 12:507–515

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferreira Jr. WG, Silva AF, Meira-Neto JAA, Schaefer CEGR, Dias AS, Ignácio M, Medeiros MCMP (2007) Composição florística da vegetação arbórea de um trecho de Floresta Estacional Semidecídua em Viçosa, Minas Gerais, e espécies de maior ocorrência na região (Floristic composition of trees in a seasonal semideciduous forest in Viçosa, Minas Gerais, and species of greater occurrence in the region). R Árvore 31:1121–1130

    Article  Google Scholar 

  • Fine PVA, Mesones I, Coley PD (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science 305:663–665

    Article  PubMed  CAS  Google Scholar 

  • Fine PVA, Miller ZJ, Mesones I, Irazuzta S, Appel HM, Stevens MHH et al. (2006). The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87:S150–S162

    Article  PubMed  Google Scholar 

  • Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP et al. (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 455:757–760

    Article  Google Scholar 

  • Forzza RC (coord) (2013) Lista de Espécies da Flora do Brasil. Online access at: http://floradobrasil.jbrj.gov.br/2012/. Accessed: March 2013

  • Friis EM, Crane PR, Petersen KR (2011) Early flowers and angiosperm evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gastauer M, Meira-Neto JAA (2013) Avoiding inaccuracies in tree calibration and phylogenetic community analysis using Phylocom 4.2. Ecol Informatics 15:85–90

    Article  Google Scholar 

  • Gause GF (1932) Experimental studies on the struggle for existence: 1. Mixed population of two species of yeast. J Exp Biol 9:389–402

    Google Scholar 

  • Gause GF (1934) The struggle for existence. Williams & Wilkins, Baltimore

    Book  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. John Wiley & Sons, Chichester

    Google Scholar 

  • Grime JP (2001) Plant Strategies, vegetation processes, and ecosystem properties. Ed. 2. John Wiley & Sons, Chichester

  • Grinnell J (1917) The niche-relationships of the California Trasher. Auk 34:544–556

    Article  Google Scholar 

  • Haegeman B, Etienne RS (2011) Independent species in independent niches behave neutrally. Oikos 120:961–963

    Article  Google Scholar 

  • Hardin G (1960) The Competitive Exclusion Principle. Science 131:1292–1297

    Article  PubMed  CAS  Google Scholar 

  • Hardy OJ (2008) Testing the spatial phylogenetic structure of local communities: statistical performances of different null models and test statistics on a locally neutral community. J Ecol 96:914–926

    Article  Google Scholar 

  • Hardy OJ (2009) SPACoDi 0.10: a program for spatial and phylogenetic analysis of community diversity. Available at: http://ebe.ulb.ac.be/ebe/Software.html

  • Hardy OJ, Jost L (2008) Interpreting and estimating measures of community phylogenetic structuring. J Ecol 96:849–852

    Article  Google Scholar 

  • Hardy OJ, Senterre B (2007) Characterizing the phylogenetic structure of communities by an additive partitioning of phylogenetic diversity. J Ecol 95:493–506

    Article  Google Scholar 

  • Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. J Ecol 89:947–959

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Oxford

    Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Amer Naturalist 104:501–528

    Article  Google Scholar 

  • Kelly CK, Bowler MG, Pybus O, Harvey PH (2008) Phylogeny, niches, and relative abundance in natural communities. Ecology 89:962–970

    Article  PubMed  Google Scholar 

  • Kembel SW, Hubbell SP (2006) The phylogenetic structure of a neotropical forest tree community. Ecology 87:S86–S99

    Article  PubMed  Google Scholar 

  • Kochian LV, Piñeros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Pl & Soil 274:175–195

    Article  CAS  Google Scholar 

  • Kozak KH, Graham CH, Wiens JJ (2008) Integrating GIS-based environmental data into evolutionary biology. Trends Ecol Evol 23:141–148

    Article  PubMed  Google Scholar 

  • Kress WJ, Erickson DL, Jones FA, Swenson NG, Perez R, Sanjur O, Bermingham E (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc Natl Acad Sci, USA 106:18621–18626

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Leibold, MA (2009) Spatial and metacommunity dynamics in biodiversity. In Levin SA (ed) The Princeton guide to ecology. Princeton University Press, Princeton

    Google Scholar 

  • Leibold MA, McPeek MA (2006) Coexistence of the niche and neutral perspectives in community ecology. Ecology 87:1399–1410

    Article  PubMed  Google Scholar 

  • Letcher SG (2010) Phylogenetic structure of angiosperm communities during tropical forest succession. Proc Roy Soc London, Ser B, Biol Sci 277:97–104

    Article  Google Scholar 

  • MacArthur RH (1958) Population ecology of some warblers of northeastern coniferous forests. Ecology 39:599–619

    Article  Google Scholar 

  • MacArthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Amer Naturalist 101:377–385

    Article  Google Scholar 

  • Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093

    Article  PubMed  Google Scholar 

  • McCune B, Mefford MJ (1999) PC-ORD version 4.0, multivariate analysis of ecological data: User’s guide. MjM Software Design, Glaneden Beach

  • Neri AV, Schaefer CEGR, Silva AF, Souza AL, Ferreira-Junior WG, Meira-Neto JAA (2012) The influence of soils on the floristic composition and community structure of an area of Brazilian Cerrado vegetation. Edinburgh J Bot 69:1–27

    Article  Google Scholar 

  • Newton AC (2007) Forest ecology and conservation: a handbook of techniques. Oxford University Press, Oxford

    Book  Google Scholar 

  • Oliveira-Filho AT, Fontes MAL (2000) Patterns of Floristic Differentiation among Atlantic Forests in Southeastern Brazil and the Influence of Climate. Biotropica 32:793–810

    Article  Google Scholar 

  • Paine CET, Baraloto C, Chave J, Hérault B (2011) Functional traits of individual trees reveal ecological constraints on community assembly in tropical rain forests. Oikos 120:720–727

    Article  Google Scholar 

  • Paine CET, Norden N, Chave J, Forget P-M, Fortunel C (2012) Phylogenetic density dependence and environmental filtering predict seedling mortality in a tropical forest. Ecol Lett 15:34–41

    Article  PubMed  Google Scholar 

  • Paula AL, Silva AF, Marco-Jr. P, Santos FAM, Souza AL (2004) Sucessão ecológica da vegetação arbóres em uma Floresta Estacional Semidecidual, Viçosa, MG, Brasil (Ecological succession of a tree community of semideciduous seasonal forest in Viçosa, Minas Gerais State, Brazil). Acta Bot Brasil 18:407–423

    Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth System Sci 11:1633–1644

    Article  Google Scholar 

  • Pei N, Lian J-Y, Erickson DL, Swenson NG, Kress WJ, Ye W-H, Ge X-J (2011) Exploring tree-habitat associations in a chinese subtropical forest plot using a molecular phylogeny generated from DNA barcode loci. PLoS ONE 6: e21273

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pinto SIP, Martins SV, Silva AG, Barros NF, Dias HCT, Scoss LM (2007) Estrutura de componente arbustivo-arbóreo de dois estádios successionais de Floresta Estacional Semidecidual na Reserva Florestal Mata do Paraíso, Viçosa, MG, Brasil (Structure of the tree-shrub component in two successional stages of semideciduous forest in the Mata do Paraíso Forest Reserve, Viçosa, MG, Brazil). R. Árvore 31:823–833

  • Punchi-Manage R, Getzin S, Wiegand T, Kanagaraj R, Savitri Gunatilleke SV, Gunatilleke IAUN, Wiegand K, Huth A (2013) Effects of topography on structuring local species assemblages in a Sri Lankan mixed dipterocarp forest. J Ecol 101:149–160

    Article  Google Scholar 

  • Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR et al. (2012) Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9:2203–2246

    Article  Google Scholar 

  • Ribas RF, Meira-Neto JAA, Silva AF, Souza AL (2003) Composição florística da dois trechos em diferentes etapas serais de uma Floresta Estacional Semidecidual em Viçosa, Minas Gerais (Floristic composition of two sites in different successional stages of Semideciduous Seasonal Montane Forest in Viçosa, Minas Gerais). R Árvore 27:821–830

    Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rosindell J, Hubbell SP, Etienne RS (2011) The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol Evol 26:340–348

    Article  PubMed  Google Scholar 

  • Saporetti Jr AW, Schaefer CEGR, Souza AL, Soares MP, Araújo DSD, Meira Neto JAA (2012) Influence of soil physical properties on plants of the Mussununga ecosystem, Brazil. Folia Geobot 47:29–39

    Article  Google Scholar 

  • Sargent RD, Ackerly DD (2008) Plant-pollinator interactions and the assembly of plant communities. Trends Ecol Evol 23:123–130

    Google Scholar 

  • Shipley B, Paine CET, Baraloto C (2012) Quantifying the importance of local niche-based and stochastic processes to tropical tree community assembly. Ecology 93:760–769

    Article  PubMed  Google Scholar 

  • Simberloff DS (1970) Taxonomic diversity of island biotas. Evolution 24:23–47

    Article  Google Scholar 

  • Souza JS, Espírito-Santo FDB, Fontes MAL, Oliveira-Filho AT, Botezelli L (2003) Análise das variações florísticas e estruturais da comunidade arbórea de um fragmento de Floresta Semidecídua às margens do Rio Capivari, Lavras-MG (Analyses of the floristic and structural variations of the tree community in a fragment of Semidecidual Forest at the margin of the Capivari River, Lavras-MG). R Árvore 27:185–206

    Google Scholar 

  • Sukri RSH, Wahab RA, Salim KA, Burslem DFRP (2012) Habitat associations and community structure of dipterocarps in response to environmental and soil conditions in Brunei Darussalam, northwest Borneo. Biotropica 44:595–605

    Article  Google Scholar 

  • Swenson NG (2009) Phylogenetic resolution and quantifying the phylogenetic diversity and dispersion of communities. PLoS ONE 4:e4390

    Article  PubMed  PubMed Central  Google Scholar 

  • Swenson NG, Enquist BJ (2009) Opposing assembly mechanisms in a Neotropical dry forest: implications for phylogenetic and functional community ecology. Ecology 90:2161–2170

    Article  PubMed  Google Scholar 

  • Ter Braak CJF (1988) CANOCO – A FORTRAN program for canonical community ordination. Technical report LWA-88-2, TNO, Institute of Applied Computer Science, Wageningen

  • Tilman D (1985) The resource-ratio hypothesis of plant succession. Amer Naturalist 125:439–464

    Article  Google Scholar 

  • van der Valk AG (1981) Succession in wetlands – a Gleasonian approach. Ecology 62:688–696

    Article  Google Scholar 

  • Valiente-Banuet A, Verdú M (2007) Facilitation can increase the phylogenetic diversity of plant communities. Ecol Lett 10:1029–1036

    Article  PubMed  Google Scholar 

  • Veloso HP, Rangel Filho ALR, Lima JCA (1991) Classificação da vegetação Brasileira, adaptada a um sistema universal. IBGE, Rio de Janeiro

    Google Scholar 

  • Verdú M, Pausas JG (2007) Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. J Ecol 95:1316–1323

    Article  Google Scholar 

  • Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Amer Naturalist 156:145–155

    Article  Google Scholar 

  • Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Molec Ecol Notes 5:181–183

    Article  Google Scholar 

  • Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and character evolution. Bioinformatics 24:2098–2100

    Article  PubMed  CAS  Google Scholar 

  • Webb CO, Ackerly DD, Kembel S (2011) Software for the analysis of phylogenetic community structure and character evolution (with phylomatic and ecovolve). Users Manual. Available at: http://phylodiversity.net/phylocom/. Accessed: September 5, 2012

  • Webb CO, Ackerly DD, McPeek MA, Donaghue MJ (2002) Phylogenies and community ecology. Annual Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  • Weiher E, Keddy PA (1995) Assembly rules, null models, and trait dispersion – new questions from old patterns. Oikos 74:159–164

    Article  Google Scholar 

  • Whitfeld TJS, Kress WJ, Erickson DL, Weiblen GD (2012) Change in community phylogenetic structure during tropical forest succession: evidence from New Guinea. Ecography 35:1–10

    Article  Google Scholar 

  • Wikstrom N, Savolainen V, Chase MW (2001) Evolution of angiosperms: Calibrating the family tree. Proc Roy Soc London, Ser B, Biol Sci 268:2211–2220

    Article  CAS  Google Scholar 

  • Zimmermann JK, Thompson J, Brakow N (2008) Large tropical forest dynamics plots: testing explication for the maintenance of species diversity. In Carson PC, Schnitzer AS (eds) Tropical forest community ecology. Blackwell Publishing Ltd, Chichester, pp 98–118

    Google Scholar 

Download references

Acknowledgements

We are grateful to Suzano Pulp and Paper for a Ph.D. scholarship for one of the authors (MG) to carry out the presented research. We also thank FAPEMIG, Floresta Escola Project, MCTI, CAPES and CNPq for scholarship (JAAMN) and support. We thank David Irsigler for surveying the tree community in the FSN plot. For helping to identify plant taxa, we thank Gilmar E. Valente, Pedro Paulo de Souza, José Martins Fernandes, Victor Peçanha de Miranda Coelho, Priscila Bezerra de Souza, Michellia Pereira Soares, Walnir Gomes Ferreira Jr., Márcio Luiz Batista and Amilcar Walter Saporetti Jr. Joerg Ewald, Jerome Chave, C. E. Timothy Paine and two anonymous reviewers are gratefully acknowledged for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Augusto Alves Meira-Neto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 120 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gastauer, M., Meira-Neto, J.A.A. Interactions, Environmental Sorting and Chance: Phylostructure of a Tropical Forest Assembly. Folia Geobot 49, 443–459 (2014). https://doi.org/10.1007/s12224-013-9181-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-013-9181-1

Keywords

Navigation