Skip to main content

Advertisement

Log in

Safety assessment of commensal enterococci from dogs

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Enterococci form a complex, diverse, and very important group of bacteria from the technological and food safety aspect, or from the health-improving aspect as probiotics. Generally, enterococci are considered to be of low pathogenic potential, which is associated mostly with clinical strains. In these strains, production of virulence factors as well as resistance to many antimicrobial drugs could complicate treatment of nosocomial infections. Because there is a lack of information on incidence of these attributes in animal commensal enterococci, we screened 160 strains originating from feces of clinically healthy dogs in Eastern Slovakia (n = 105). The predominant species were Enterococcus faecium (57.5%) followed by Enterococcus faecalis (21.9%), and Enterococcus hirae (17.5%), while Enterococcus casseliflavus (1.9%) and Enterococcus mundtii (1.2%) rarely occurred. Among the tested antibiotics, gentamicin (high level) was the most effective drug against canine enterococci (95% of isolates were sensitive). In contrast, the highest resistance recorded (71.9%) was to teicoplanin. PCR screening showed the highest incidence of virulence genes in E. faecalis species. The most frequently detected were genes encoding adhesins efa Afm and efa Afs and sex pheromone cpd. IS16 gene, a marker specific for hospital strains, appeared in nine E. faecium strains. No strain was positive for DNase activity, 8.8% of the isolated strains showed gelatinase activity, and almost 100% strains produced tyramine. It seems commensal-derived enterococci from dogs could also to some extent be potential reservoir of risk factors for other microbiota or organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agudelo Higuita NI, Huycke MM (2014) Enterococcal disease, epidemiology, and implications for treatment. In: Gilmore MS, Clewell DB, Ike Y, Shankar N (eds) Enterococci: from commensals to leading causes of drug-resistant infection. Massachusetts Eye and Ear Infirmary, Boston, pp 1–27

    Google Scholar 

  • Arias CA, Murray BE (2012) The rise of the Enterococcus beyond vancomycin resistance. Nat Rev Microbiol 10:266–278

    Article  CAS  PubMed Central  Google Scholar 

  • Baele M, Chiers K, Davriese LA, Smith HE, Wisselink HJ, Vaneechoutte M, Haesebrouck F (2001) The gram-positive tonsillar and nasal flora of piglets before and after weaning. J Appl Microbiol 91:997–1003

    Article  CAS  PubMed  Google Scholar 

  • Bessède E, Angla-gre M, Delagarde Y, Sep Hieng S, Ménard A, Mégraud F (2011) Matrix-assisted laser-desorption/ionization BIOTYPER: experience in the routine of a university hospital. Clin Microbiol Infect 17:533–538

    Article  PubMed  Google Scholar 

  • Bover-Cid S, Holzapfel WH (1999) Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol 53:33–41

    Article  CAS  PubMed  Google Scholar 

  • Bybee SN, Scorza AV, Lappin MR (2011) Effect of the probiotic Enterococcus faaecium SF68 on presence of diarrhea in cats and dogs housed in a animal shelter. J Vet Intern Med 25:856–860

    Article  CAS  PubMed  Google Scholar 

  • Cattoir V, Leclercq R (2013) Twenty-five years of shared life with vancomycin-resistant enterococci: is it time to divorce? J Antimicrob Chemother 68:731–742

    Article  CAS  PubMed  Google Scholar 

  • Cox CR, Coburn PS, Gilmore MS (2005) Enterococcal cytolysin: a novel two component peptide system that serves as a bacterial defense against eukaryotic and prokaryotic cells. Curr Prot Pept Sci 6:77–84

    Article  CAS  Google Scholar 

  • Damborg P, Top J, Hendrickx APA, Dawson S, Willems RJ, Guardabassi L (2009) Dogs are a reservoir of ampicillin-resistant Enterococcus faecium lineages associated with human infections. Appl Environ Microbiol 75:2360–2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drahovská H, Slobodníková L, Kocínová D, Seman M, Končeková R (2004) Antibiotic resistance and virulence factors among clinical and food enterococci isolated in Slovakia. Folia Microbiol 49:763–768

    Article  Google Scholar 

  • Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67:1628–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) (2012) Guidance on the safety assessment of Enterococcus faecium in animal nutrition. The EFSA J 10:2682 (10 pages)

    Article  Google Scholar 

  • EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) (2014) Scientific opinion on the safety and efficacy of Oralin® (Enterococcus faecium) as a feed additive for calves for rearing, piglets, chickens for fattening, turkeys for fattening and dogs. The EFSA J 12:3727

    Article  Google Scholar 

  • Euzéby JP (1997) List of bacterial names with standing in nomenclature: a folder available on the Internet (URL: http://www.bacterio.net/enterococcus.html, last update 2016). Int J Syst Bacteriol 64:590–592

  • Fisher K, Phillips P (2009) The ecology, epidemiology and virulence of Enterococcus. Microbiol 155:1749–1757

    Article  CAS  Google Scholar 

  • Guardabassi L, Schwarz S, Lloyd DH (2004) Pet animals as reservoirs of antimicrobial-resistant bacteria. J Antimicrob Chemother 54:321–332

    Article  CAS  PubMed  Google Scholar 

  • Iseppi R, Messi P, Anacarso I, Bondi M, Sabia C, Condò C, de Niederhausern S (2015) Antimicrobial resistance and virulence traits in Enterococcus strains isolated from dogs and cats. New Microbiol 38:369–378

    PubMed  Google Scholar 

  • Jackson CR, Fedorka-Cray PJ, Davis JA, Barrett JB, Frye JG (2009) Prevalence, species distribution and antimicrobial resistance of enterococci isolates from dogs and cats in the United States. J Appl Microbiol 107:1269–1278

    Article  CAS  PubMed  Google Scholar 

  • Jiménez E, Ladero V, Chico E, Maldonado-Barragán A, López M, Martín V, Fernández L, Fernández M, Álvarez MA, Torres C, Rodríguez JM (2013) Antibiotic resistance, virulence determinants and production of biogenic amines among enterococci from ovine, feline, canine, porcine and human milk. BMC Microbiol 13:288

    Article  PubMed  PubMed Central  Google Scholar 

  • Kajihara T, Nakamura S, Iwanaga N, Oshima K, Takazono T, Miyazaki T, Izumikawa K, Yanagihara K, Kohno N, Kohno S (2015) Clinical characteristics and risk factors of enterococcal infections in Nagasaki, Japan: a retrospective study. BMC Infect Dis 15:426

    Article  PubMed  PubMed Central  Google Scholar 

  • Kataoka Y, Umino Y, Ochi H, Harada K, Sawada T (2014) Antimicrobial susceptibility of enterococcal species isolated from antibiotic-treated dogs and cats. J Vet Med Svi 76:1399–1402

    Article  Google Scholar 

  • Klare I, Konstabel C, Mueller-Bertling S, Werner G, Strommenger B, Kettlitz C, Borgmann S, Schulte B, Jonas D, Serr A, Fahr AM, Eigner U, Witte W (2005) Spread of ampicillin/vancomycin-resistant Enterococcus faecium of the epidemic-virulent clonal complex-17 carrying the genes esp and hyl in German hospitals. Eur J Clin Microbiol Infect Dis 24:815–825

    Article  CAS  PubMed  Google Scholar 

  • Kwon KH, Moon BY, Hwang SY, Park YH (2012) Detection of CC17 Enterococcus faecium in dogs and a comparison with human isolates. Zoonoses Public Health 59:375–378

    Article  CAS  PubMed  Google Scholar 

  • Ladero V, Fernández M, Alvarez MA (2009) Isolation and identification of tyramine-producing enterococci from human faecal samples. Can J Microbiol 55:215–218

    Article  CAS  PubMed  Google Scholar 

  • Ladero V, Fernández M, Calles-Enriquez M, Sánches-Llana E, Canedo E, Martin MC, Alvarez MA (2012) Is the production of the biogenic amines tyramine and putrescine a species-level trait in enterococci? Food Microbiol 30:132–138

    Article  CAS  PubMed  Google Scholar 

  • Lebreton F, Willems RJL, Gilmore MS (2014) Enterococcus diversity, origins in nature and gut colonization. In: Gilmore MS, Clewell DB, Ike Y, Shankar N (eds) Enterococci: from commensals to leading causes of drug resistant infection (internet). Massachusetts Eye and Ear Infirmary, Boston, pp 1–46

    Google Scholar 

  • Lindenstrau AG, Pavlovic M, Bringmann A, Behr J, Ehrmann MA, Vogel RF (2011) Comparison of genotypic and phenotypic cluster analyses of virulence determinants and possible role of CRISPR elements towards their incidence in Enterococcus faecalis and Enterococcus faecium. Syst Appl Microbiol 34:553–560

    Article  Google Scholar 

  • Lopes MF, Simões AP, Tenreiro R, Marques JJ, Crespo MT (2006) Activity and expression of a virulence factor, gelatinase, in dairy enterococci. J Food Microbiol 112:208–214

    Article  CAS  Google Scholar 

  • MPSR (2016) Stav mikrobiálne rezistencie v Slovenskej republike. 53 strán. ISBN 978–80–89738-07-6

  • Performance standards for antimicrobial susceptibility testing: 25th Informational supplement (2015) CLSI M100-S25. Clinical and Laboratory Standards Institute. Wayne, PA, USA

  • Rubinstein E, Keynan Y (2013) Vancomycin-resistant enterococci. Crit Care Clin 29:841–852

    Article  PubMed  Google Scholar 

  • Semedo T, Santos MA, Lopes MF, Marques JJF, Crespo MT, Tenreiro R (2003) Virulence factors in food, clinical and reference enterococci: a common trait in the genus? Syst Appl Microbiol 26:13–22

    Article  PubMed  Google Scholar 

  • Sung JML, Lindsay JA (2007) Staphylococcus aureus strains that are hypersusceptible to resistance gene transfer from enterococci. Antimicrob Agents Chemother 51:2189–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vu J, Carvalho J (2011) Enterococcus: review of its physiology, pathogenesis, diseases and the challenges it poses for clinical microbiology. Front Biol 6:357–366

    Article  CAS  Google Scholar 

  • Werner G, Fleige C, Geringer U, van Schaik W, Klare I, Witte W (2011) IS element IS16 as a molecular screening tool to identify hospital-associated strains of Enterococcus faecium. BMC Infect Dis 11:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong C, Epstein SE, Westropp JL (2015) Antimicrobial susceptibility patterns in urinary tract infections in dogs (2010–2013). J Vet Inter Med 29:1045–1052

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was funded by the Slovak Scientific Agency VEGA (no. 2/0012/16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Kubašová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubašová, I., Strompfová, V. & Lauková, A. Safety assessment of commensal enterococci from dogs. Folia Microbiol 62, 491–498 (2017). https://doi.org/10.1007/s12223-017-0521-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-017-0521-z

Keywords

Navigation