Skip to main content

Advertisement

Log in

Effect of continuous sub-culturing on infectivity of Clostridium perfringens ATCC13124 in mouse gas gangrene model

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Clostridium perfringens is a Validated Biological Agent and a pathogen of medical, veterinary, and military significance. Gas gangrene is the most destructive of all the clostridial diseases and is caused by C. perfringens type A strains wherein the infection spreads quickly (several inches per hour) with production of gas. Influence of repeated in vitro cultivation on the infectivity of C. perfringens was investigated by comparing the surface proteins of laboratory strain and repository strains of the bacterium using 2DE-MS approach. In order to optimize host-pathogen interaction during experimental gas gangrene infection, we also explored the role of particulate matrix on ability of C. perfringens to cause gas gangrene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alam SI, Bansod S, Kumar RB et al (2009) Differential proteomic analysis of Clostridium perfringens ATCC13124; identification of dominant, surface and structure associated proteins. BMC Microbiol 9:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Alam SI, Kumar B, Kamboj DV (2012) Multiplex detection of protein toxins using MALDI-TOF-TOF tandem mass spectrometry: application in unambiguous toxin detection from bio-aerosol. Anal Chem 84:10500–10507

    Article  CAS  PubMed  Google Scholar 

  • Armstrong AR, Rae MV (1941) Chemotherapy and experimental gas gangrene. Can Med Assoc J 45:116–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Awad MM, Ellemor DM, Boyd RL (2001) Synergistic effects of alpha-toxin and perfringolysin O in Clostridium perfringens-mediated gas gangrene. Infect Immun 69:7904–7910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbour AG (1988) Plasmid analysis of Borrelia burgdorferi, the Lyme borreliosis agent. J Clin Microbiol 26:475–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blackshear PJ (1984) Systems for polyacrylamide gel electrophoresis. Methods Enzymol 104:237–255

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chapuis E, Page’s S, Emelianoff V, Givaudan A, Ferdy JB (2011) Virulence and pathogen multiplication: a serial passage experiment in the hypervirulent bacterial insect-pathogen Xenorhabdus nematophila. PLoS One 6(1):e15872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole JN, Ramirez RD, Currie BJ et al (2005) Surface analyses and immune reactivities of major cell wall-associated proteins of group A Streptococcus. Infect Immun 73:3137–3146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwivedi P, Alam SI, Kumar O (2015) Lipoproteins from Clostridium perfringens and their protective efficacy in mouse model. Infect Genet and Evolution 34:434–443

    Article  CAS  Google Scholar 

  • Ecker DJ, Sampath R, Willett P et al (2005) The Microbial Rosetta Stone Database: a compilation of global and emerging infectious microorganisms and bioterrorist threat agents. BMC Microbiol 5:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellemor DM, Baird RN, Awad MM (1999) Use of genetically manipulated strains of Clostridium perfringens reveals both alpha-toxin and theta-toxin are required for vascular leukostasis to occur in experimental gas gangrene. Infect Immun 67:4902–4907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans DG (1943) The protective properties of the alpha antitoxin and antihyaluronidase occurring in C. welchii type A antiserum. J Pathol Bacteriol 55:427–434

    Article  CAS  Google Scholar 

  • Hansmeier N, Chao TC, Puhler A (2006) The cytosolic, cell surface and extracellular proteomes of the biotechnologically important soil bacterium Corynebacterium efficiens YS-314 in comparison to those of Corynebacterium glutamicum ATCC 13032. Proteomics 6:233–250

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Graham C, Graham RL et al (2011) Quantitative proteomic analysis of the heat stress response in Clostridium difficile strain 630. J Proteome Res 10(9):3880–3890

    Article  CAS  PubMed  Google Scholar 

  • Jeffery CJ (2003) Moonlighting proteins: old proteins learning new tricks. Trends Genet 19:415–417

    Article  CAS  PubMed  Google Scholar 

  • Johnson RC, Marek N, Kodner C (1984) Infection of Syrian hamsters with Lyme disease spirochetes. J Clin Microbiol 18:1099–1101

    Google Scholar 

  • Kolberg J, Høiby EA, Lopez R, Sletten K (1997) Monoclonal antibodies against Streptococcus pneumoniae detect epitopes on eubacterial ribosomal proteins L7/L12 and on streptococcal elongation factor Ts. Microbiology 143(1):55–61

  • Kumar B, Alam SI, Kumar O (2013) Host response to intravenous injection of epsilon toxin in mouse model: a proteomic view. Proteomics 13:89–107

    Article  CAS  PubMed  Google Scholar 

  • Lehmann Y, Meile L, Teuber M (1996) Rubrerythrin from Clostridium perfringens—cloning of the gene, purification of the protein, and characterization of its superoxide dismutase function. J Bacteriol 178:7152–7158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLennan JD (1943) Anaerobic infections of war wounds in the Middle East. Lancet 2:123–126

    Article  Google Scholar 

  • MacLennan JD (1962) The histotoxic clostridial infections of man. Bacteriol Rev 26:177–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller TL, Wolin MJ (1974) A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27(5):985–987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Modun B, Williams P (1999) The staphylococcal transferrin-binding protein is a cell wall glyceraldehyde-3-phosphate dehydrogenase. Infect Immun 67:1086–1092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moors MA, Levitt B, Youngman P et al (1999) Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes. Infect Immun 67:131–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morfeldt E, Janzon L, Arvidson S et al (1998) Cloning of a chromosomal locus (exp) which regulates the expression of several exoprotein genes in Staphylococcus aureus. Mol Gen Genet 211:435–440

    Article  Google Scholar 

  • Mydel P, Takahashi Y, Yumoto H et al (2006) Roles of the host oxidative immune response and bacterial antioxidant rubrerythrin during Porphyromonas gingivalis infection. PLoS Pathog 2(7):e76

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters C, Paterson Y (2003) Enhancing the immunogenicity of bioengineered Listeria monocytogenes by passaging through live animal hosts. Vaccine 21:1187–1194

    Article  CAS  PubMed  Google Scholar 

  • Petit L, Gibert M, Popoff MR (1999) Clostridium perfringens toxinotype and genotype. Trends Microbiol 7:104–110

    Article  CAS  PubMed  Google Scholar 

  • Renzoni A, Cossart P, Dramsi S (1999) PrfA, the transcriptional activator of virulence genes, is upregulated during interaction of Listeria monocytogenes with mammalian cells and in eukaryotic cell extracts. Mol Microbiol 34:552–561

    Article  CAS  PubMed  Google Scholar 

  • Ripio MT, Dominguez-Bernal G, Suarez M (1996) Transcriptional activation of virulence genes in wild-type strains of Listeria monocytogenes in response to a change in the extracellular medium composition. Res Microbiol 147:371–384

    Article  CAS  PubMed  Google Scholar 

  • Schwan TG, Burgdorfer W (1987) Antigenic changes of Borrelia burgdorferi as a result of in vitro cultivation. J Infect Dis 156:852–853

    Article  CAS  PubMed  Google Scholar 

  • Schwan TG, Burgdorfer W, Garon CF (1988) Changes in infectivity and plasmid profile of the Lyme disease spirochete, Borrelia burgdorferi, as a result of in vitro cultivation. Infect Immun 56(8):1831–1836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta N, Alam SI, Kumar B (2010) Comparative proteomic analysis of extracellular proteins of Clostridium perfringens type A and type C strains. Infect Immun 78(9):3957–3968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Severin A, Nickbarg E, Wooters J et al (2007) Proteomic analysis and identification of Streptococcus pyogenes surface-associated proteins. J Bacteriol 189:1514–1522

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Shima K, Yoshino K et al (2002) Proteome and transcriptome analysis of the virulence genes regulated by the VirR/VirS system in Clostridium perfringens. J Bacteriol 184:2587–2594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somerville GA, Beres SB, Fitzgerald JR (2002) In vitro serial passage of Staphylococcus aureus: changes in physiology, virulence factor production, and agr nucleotide sequence. J Bacteriol 184(5):1430–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens DL, Maier KA, Laine BM (1987) Comparison of clindamycin, rifampin, tetracycline, metronidazole, and penicillin for efficacy in prevention of experimental gas gangrene due to Clostridium perfringens. J Infect Dis 155:220–228

    Article  CAS  PubMed  Google Scholar 

  • Stevens DL, Tweten RK, Awad MM, Rood JI, Bryant AE (1997) Clostridial gas gangrene: evidence that alpha and theta toxins differentially modulate the immune response and induce acute tissue necrosis. J Infect Dis 176:189–195

    Article  CAS  PubMed  Google Scholar 

  • Stevens DL, Titball RW, Jepson M et al (2004) Immunization with the C-domain of α-toxin prevents lethal infection, localizes tissue injury, and promotes host response to challenge with Clostridium perfringens. J Infect Dis 190:767–773

    Article  CAS  PubMed  Google Scholar 

  • Stevens DL, Aldape MJ, Bryant AE (2012) Life-threatening clostridial infections. Anaerobe 18:254–259

    Article  PubMed  Google Scholar 

  • Titball RW, Rood JI (2001) Clostridium perfringens wound infection. In: Sussman M (ed) Molecular Medical Microbiology. Academic Press, UK, pp 1875–1904

    Google Scholar 

  • Vahidy R, Waseem M, Khalid SM (1996) A comparative study of unpassaged and animal passaged cultures of Listeria monocytogenes in rabbits. Ann Acad Med Singap 25:139–553

    CAS  PubMed  Google Scholar 

  • Wang Y, Lu B, Hao P et al (2013) Comprehensive treatment for gas gangrene of the limbs in earthquakes. Chin Med J 126(20):3833–3839

    PubMed  Google Scholar 

  • Wu Z, Zhang W, Lu C (2008) Immunoproteomic assay of surface proteins of Streptococcus suis serotype 9. FEMS Immunol Med Microbiol 53(1):52–59

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Director, DRDE, Gwalior, for providing all facilities and support required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Imteyaz Alam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 142 kb).

ESM 2

(DOC 27 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R.B., Alam, S.I. Effect of continuous sub-culturing on infectivity of Clostridium perfringens ATCC13124 in mouse gas gangrene model. Folia Microbiol 62, 343–353 (2017). https://doi.org/10.1007/s12223-017-0503-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-017-0503-1

Keywords

Navigation