Skip to main content
Log in

Nimesulide inhibits pathogenic fungi: PGE2-dependent mechanisms

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Certain non-steroidal anti-inflammatory drugs can inhibit fungal growth, fungal prostaglandin E2 production, and enzyme activation. This study aims to investigate the antifungal effect of nimesulide against pathogenic filamentous fungi and yeast. The experiments detailed below were also designed to investigate whether the action is dependent on E2 fungal prostaglandins. Our data showed that nimesulide exhibited potent antifungal activity, mainly against Trichophyton mentagrophytes (ATCC 9533) and Cryptococcus neoformans with MIC values of 2 and 62 μg/mL, respectively. This drug was also able to inhibit the growth of clinic isolates of filamentous fungi, such as Aspergillus fumigatus, and dermatophytes, such as T. rubrum, T. mentagrophytes, Epidermophyton floccosum, Microsporum canis, and M. gypseum, with MIC values ranging from 112 to 770 μg/mL. Our data also showed that the inhibition of fungal growth by nimesulide was mediated by a mechanism dependent on PGE2, which led to the inhibition of essential fungal enzymes. Thus, we concluded that nimesulide exerts a fungicidal effect against pathogenic filamentous fungi and yeast, involving the inhibition of fungal prostaglandins and fungal enzymes important to the fungal growth and colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Adamski Z, Kowalczyk MJ, Adamska K, Kubisiak-Rzepczyk H, Bowszyc-Dmochowska M, Banaszak A, Bartkiewicz P, Zaba R (2014) The first non-African case of Trichophyton rubrum var. raubitschekii or a urease-positive Trichophyton rubrum in central Europe? Mycopathologia 178:91–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Akhtar S, Khan MA, Shahid K, Akhtar H (2014a) Synthesis, characterization, in-vitro antibacterial and antifungal assays of organotin (IV) complexes of nimesulide. Int J Pharm Sci Rev Res 28:106–110

    CAS  Google Scholar 

  • Akhtar S, Khan MA, Akhtar H, Shahid K (2014b) Metal complexes of nimesulide; synthesis, characterization and in-vitro biological screening. Int J Res Pharm Sci Rev Res 4:31–35

    CAS  Google Scholar 

  • Alem MAS, Douglas LJ (2004) Effects of aspirin and other nonsteroidal anti-inflammatory drugs on biofilms and planktonic cells of Candida albicans. Antimicrob Agents Chemother 48:41–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-kuraishy HM, Algareeb AI, Al-windy SA (2013) Experimental antibacterial activity of selective cyclooxygenase antagonist. Int J Basic Clinic Pharmacol 2:381–385

    Article  Google Scholar 

  • Alp S, Arikan S (2008) Investigation of extracellular elastase, acid proteinase and phospholipase activities as putative virulence factors in clinical isolates of Aspergillus species. J Basic Microbiol 48:331–337

    Article  PubMed  Google Scholar 

  • Alves MJQF, Mesquita M, Tardivo AC (2008) Hypocholesterolemic effect of propolis caffeic acids. Rev Bras Plant Med 10:100–105

    CAS  Google Scholar 

  • Ballmann GE, Chaffin WL (1979) Lipid synthesis during reinitiation of growth from stationary phase cultures of Candida albicans. Mycopathologia 67:39–43

    Article  CAS  PubMed  Google Scholar 

  • Borges RS, Oliveira JP, Matos RF, Chaves Neto AM, Carneiro AS, Monteiro MC (2015) Involvement of electron and hydrogen transfers through redox metabolism on activity and toxicity of the nimesulide. J Mol Model 21(7):166

    Article  PubMed  Google Scholar 

  • Carlini CR, Ligabue-Braun R (2016) Ureases as multifunctional toxic proteins: a review. Toxicon 110:90–109

    Article  CAS  PubMed  Google Scholar 

  • Ciccoli R, Sahi S, Singh S, Prakash H, Zafiriou MP, Ishdorj G, Kock JLF, Nigam M (2005) Oxygenation by COX-2 (cyclo-oxygenase-2) of 3-HETE (3-hydroxyeicosatetraenoic acid), a fungal mimetic of arachidonic acid, produces a cascade of novel bioactive 3-hydroxyeicosanoids. Biochem J 390:737–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clinical and Laboratory Standards Institute (2008) Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard M27-A3, 3rd edition. CLSI, Wayne, PA

  • Chowdhury B, Adak M, Boses SK (2003) Flurbiprofen, a unique non-steroidal anti-inflammatory drug with antimicrobial activity against Trichophyton, Microsporum and Epidermophyton species. Lett Appl Microbiol 37:158–161

    Article  CAS  PubMed  Google Scholar 

  • Cox GM, Mukherjee J, Cole GT, Casadevall A, Perfect JR (2000) Urease as a virulence factor in experimental cryptococcosis. Infect Immun 68:443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Paiva REF, Abbehausen C, Gomes AF, Gozzo FC, Lustri WR, Formiga ALB, Corbi PP (2012) Synthesis, spectroscopic characterization, DFT studies and antibacterial assays. Polyhedron 36:112–119

    Article  CAS  Google Scholar 

  • De Quadros AU, Bini D, Pereira PA, Moroni EG, Monteiro MC (2011) Antifungal activity of some cyclooxygenase inhibitors on Candida albicans: PGE2-dependent mechanism. Folia Microbiol. 56:349–352

    Article  CAS  Google Scholar 

  • Deva R, Ciccoli R, Kock L, Nigam S (2001) Involvement of aspirin-sensitive oxylipins in vulvovaginal candidiasis. FEMS Microbiol Lett 198:37–43

    Article  CAS  PubMed  Google Scholar 

  • Ells R, Kock JLF, Albertyn J, Kemp G, Pohl CH (2011) Effect of inhibitors of arachidonic acid metabolism on prostaglandin E2 production by Candida albicans and Candida dubliniensis biofilms. Med Microbiol Immunol 200:23–28

    Article  CAS  PubMed  Google Scholar 

  • Ells R, Kock JL, Albertyn J, Pohl CH (2012) Arachidonic acid metabolites in pathogenic yeasts. Lipids Health Dis 8 11:100

  • Erb-Downward JRL, Huffnagle GB (2006) Role of oxylipins and other lipid mediators in fungal pathogenesis. Future Microbiol 1:219–227

    Article  CAS  PubMed  Google Scholar 

  • Erb-downward JR, Noverr MC (2007) Characterization of prostaglandin E2 production by Candida albicans. Infect Immun 75:3498–3505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erb-downward JR, Noggle RM, Williamson PR, Huvnagle GB (2008) The role of laccase in prostaglandin production by Cryptococcus neoformans. Mol Microbiol 68:1428–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feder V, Kmetzsch L, Staats CC, Vidal-Figueiredo N, Ligabue-Braun R, Carlini CR, Vainstein MH (2015) Cryptococcus gattii urease as a virulence factor and the relevance of enzymatic activity in cryptococcosis pathogenesis. FEBS J 282:1406–1418

    Article  CAS  PubMed  Google Scholar 

  • Grózer Z, Tóth A, Tóth R, Kecskeméti A, Vágvölgyi C, Nosanchuk JD, Szekeres A, Gácser A (2015) Candida parapsilosis produces prostaglandins from exogenous arachidonic acid and OLE2 is not required for their synthesis. Virulence 6:85–92

  • Gu Q, Xia HH, Wang WH, Wang JD, Wong WM, Chan AO, Yuen MF, Lam SK, Cheung HK, Liu XG, Wong BC (2004) Effect of cyclo-oxygenase inhibitors on Helicobacter pylori susceptibility to metronidazole and clarithromycin. Aliment Pharmacol Ther 20:675–681

    Article  CAS  PubMed  Google Scholar 

  • Hazen KC (1998) Fungicidal versus fungistatic activity of terbinafine and itraconazole: an in vitro comparison. J Am Acad Dermatol 38:S37–S41

    Article  CAS  PubMed  Google Scholar 

  • Hawser S, Islam K (1999) Comparisons of the effects of fungicidal and fungistatic antifungal agents on the morphogenetic transformation of Candida albicans. J Antimicrob Chemother 43:411–413

    Article  CAS  PubMed  Google Scholar 

  • Kanamori H, Rutala WA, Sickbert-Bennett EE, Weber DJ (2015) Review of fungal outbreaks and infection prevention in healthcare settings during construction and renovation. Clin Infect Dis 61:433–444

    Article  PubMed  Google Scholar 

  • Kaur H, Puri JK, Singla A (2013) Metal ion interactions with drugs: electrochemical study of complexation of various bivalent metal ions with nimesulide and ibuprofen. J Mol Liq 182:39–42

    Article  CAS  Google Scholar 

  • Kawahara K, Hohjoh H, Inazumi T, Tsuchiya S, Sugimoto Y (2015) Prostaglandin E-induced inflammation: relevance of prostaglandin E receptors. Biochim Biophys Acta 1851:414–421

    Article  CAS  PubMed  Google Scholar 

  • Kitamoto D, Fuzishiro T, Yanagishita H, Nakane T, Nakahara T (1992) Production of mannosylerythriol lipids as biosurfactants by resting cells of Candida antarctica. Biotechnol 14:305–310

    CAS  Google Scholar 

  • Kupfahl C, Tsikas D, Niemann J, Geginat G, Hof H (2012) Production of prostaglandins, isoprostanes and thromboxane by Aspergillus fumigatus: identification by gas chromatography-tandem mass spectrometry and quantification by enzyme immunoassay. Mol Immunol 49:621–627

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudabadi AZ, Radcliffe CE, Coleman DC, Drucker DB (2002) Comparison of Candida dubliniensis and C. albicans based on polar lipid composition. J Appl Microbiol 93:894–899

    Article  PubMed  Google Scholar 

  • Mirbod-Donovan F, Schaller R, Hung CY, Xue J, Reichard U, Cole GT (2006) Urease produced by Coccidioides posadasii contributes to the virulence of this respiratory pathogen. Infect Immun 74:504–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra P, Bolard J, Prasad R (1992) Emerging role of lipids of Candida albicans, a pathogenic dimorphic yeast. Biochim Biophys Acta 9:1–14

    Article  Google Scholar 

  • Mishra NN, Ali S, Shukla PK (2014) Arachidonic acid affects biofilm formation and PGE2 level in Candida albicans and non-albicans species in presence of subinhibitory concentration of fluconazole and terbinafine. Braz J Infect Dis 18:287–293

    Article  PubMed  Google Scholar 

  • Noverr MC, Phare SM, Toews GB, Coffey MJ, Huffnagle GB (2001) Pathogenic yeasts Cryptococcus neoformans and Candida albicans produce immunomodulatory prostaglandins. Infect Immun 69:2957–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noverr MC, Toews GG, Huffnagle GB (2002) Production of prostaglandins and leukotrienes by pathogenic fungi. Infect Immun 70:400–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noverr MC, Erb-downward JR, Huffnagle GB (2003) Production of eicosanoids and other oxylipins by pathogenic eukaryotic microbes. Clin Microbiol Rev 16:517–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira PAT, Trindade BC, Secatto A, Nicolete R, Buzalaf CP, Ramos SG, Sadikot R, Bitencourt CS, Faccioli LH (2013) Celecoxib improves host defense through prostaglandin inhibition during Histoplasma capsulatum infection. Mediat Inflamm. doi:10.1155/2013/950981

    Google Scholar 

  • Pereira PA, Bini D, Bovo F, Faccioli LH, Monteiro MC (2016) Neutrophils influx and proinflammatory cytokines inhibition by sodium salicylate, unlike aspirin, in Candida albicans-induced peritonitis model. Folia Microbiol 61:337–346

    Article  CAS  Google Scholar 

  • Rainsford KD (2006) Situação atual dos usos terapêuticos e ações preferenciais da ciclo-oxigenase-2 AINE, a nimesulida. Inflammopharmacology 54:120–137

    Article  Google Scholar 

  • Roya S, Banerjeea R, Sarkar M (2006) Direct binding of Cu(II)-complexes of oxicam NSAIDs with DNA backbone. J Inorg Biochem 100:1320–1331

    Article  Google Scholar 

  • Rusu E, Radu-popescu M, Pelinescu D, Vassu T (2014) Treatment with some anti-inflammatory drugs reduces germ tube formation in Candida albicans strains. Braz J Microbiol 45:1379–1383

    Article  CAS  PubMed  Google Scholar 

  • Shea JM, Del Poeta M (2006) Lipid signaling in pathogenic fungi. Curr Opin Microbiol 9:352–358

    Article  CAS  PubMed  Google Scholar 

  • Strope PK, Nickerson KW, Harris SD, Moriyama EN (2011) Molecular evolution of urea amidolyase and urea carboxylase in fungi. BMC Evol Biol 11:80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trofa D, Agovino M, Stehr F, Schäfer W, Rykunov D, Fiser A, Hamari Z, Nosanchuk JD, Gácser A (2009) Acetylsalicylic acid (aspirin) reduces damage to reconstituted human tissues infected with Candida species by inhibiting extracellular fungal lipases. Microb Infect 11:11311139

    Article  Google Scholar 

  • Tsitsigiannis DI, Bok JW, Andes D, Nielsen KF, Frisvad JC, Keller NP (2005a) Aspergillus cyclooxygenase like enzymes are associated with prostaglandin production and virulence. Infect Immun 73:4548–4559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsitsigiannis DI, Kowieski TM, Zarnowski R, Keller NP (2005b) Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology 151:1809–1821

    Article  CAS  PubMed  Google Scholar 

  • Tsitsigiannis DI, Keller NP (2006) Oxylipins act as determinants of natural product biosynthesis and seed colonization in Aspergillus nidulans. Mol Microbiol 59:882–892

    Article  CAS  PubMed  Google Scholar 

  • Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host-fungal communication signals. Trends Microbiol 15:109–118

    Article  CAS  PubMed  Google Scholar 

  • Vane JR, Botting RM (1998) Mechanism of action of nonsteroidal anti-inflammatory drugs. Am J Med 104:2S–8S

    Article  CAS  PubMed  Google Scholar 

  • Wang WH, Wong WM, Dailidiene D, Berg DE, Gu Q, Lai KC, Lam SK, Wong BC (2003) Aspirin inhibits the growth of Helicobacter pylori and enhances its susceptibility to antimicrobial agents. Gut 52:490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wang WH, Li J, Liu FX (2010) Celecoxib inhibits Helicobacter pylori colonization-related factors. World J Gastroenterol 21:846–853

    Google Scholar 

  • Zhu X, Williamson PR (2004) Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res 5:1–10

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Federal University of Pará/PA. M. C. Monteiro is a recipient of fellowship from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Chagas Monteiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Matos, R.F., Mendonça, L.C.V., da Silva Souza, K.G. et al. Nimesulide inhibits pathogenic fungi: PGE2-dependent mechanisms. Folia Microbiol 62, 169–174 (2017). https://doi.org/10.1007/s12223-016-0483-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-016-0483-6

Keywords

Navigation