Skip to main content
Log in

An immunological assay for identification of potential biofilm-associated antigens of Staphylococcus aureus

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Attachment of bacterial pathogens to the niche tissue in the host is the first step in biofilm formation leading to colonization and establishment of infection in the host. While the most common method used for determining the potential role of a bacterial antigen in biofilm formation has been demonstration of loss of this property using specific knockout mutants, it is an expensive and a laborious procedure. This study describes an alternative immunological assay for identification of attachment antigens of Staphylococcus aureus, potentially important in the development of an effective vaccine against infections caused by this pathogen. The method is based upon the concept of inhibition of attachment of S. aureus to PEGs coated with virulence antigen-specific antibodies. Antibodies used for validation of this assay were specific for ClfA, FnBPA, SdrD, PNAG and α-toxin, accredited biofilm-associated antigens of S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Anderson MJ, Lin YC, Gillman AN, Parks PJ, Schlievert PM, Peterson ML (2012) Alpha-toxin promotes Staphylococcus aureus mucosal biofilm formation. Front Cell Infect Microbiol 2:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Atshan SS, Shamsudin MN, Sekawi Z, Lung LTT, Hamat RA, Karunanidhi A, et al. (2012) Prevalence of adhesion and regulation of biofilm-related genes in different clones of Staphylococcus aureus. J Biomed Biotechnol Article ID 976972:1–10

  • Babra C, Tiwari J, Costantino P, Sunagar R, Isloor S, Hegde N, Mukkur T (2014) Human methicillin-sensitive Staphylococcus aureus biofilms: potential associations with antibiotic resistance persistence and surface polysaccharide antigens. J Basic Microbiol 54:721–728

    Article  CAS  PubMed  Google Scholar 

  • Bagnoli F, Bertholet S, Grandi G (2012) Inferring reasons for the failure of Staphylococcus aureus vaccines in clinical trials. Front Cell Infect Microbiol 2:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Bagnoli F, Fontana MR, Soldaini E, Mishra RPN, Fiaschi L, Cartocci E et al (2015) Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against Staphylococcus aureus. PNAS 112:3680–3685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burts ML, Williams WA, DeBord K, Missiakas DM (2005) EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci U S A 102:1169–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caiazza NC, O’Toole GA (2003) Alpha-toxin is required for biofilm formation by Staphylococcus aureus. J Bacteriol 185:3214–3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corrigan RM, Miajlovic H, Foster TJ (2009) Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells. BMC Microbiol 9:22

  • Cywes-Bentley C, Skurnik D, Zaidi T, Roux D, DeOliveira RB, Wendy S, Garret WS et al (2013) Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens. Proc Natl Acad Sci U S A 110:E2209–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fattom AI, Horowith G, Fuller S, Propst M, Naso R (2004) Development of StaphVax, a polysaccharide conjugate vaccine against S. aureus infection: from lab bench to phase III clinical trials. Vaccine 22:88–7

    Article  Google Scholar 

  • Foster TJ, Geoghegan JA, Ganesh VK, Hook M (2014) Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12:49–62

    Article  CAS  PubMed  Google Scholar 

  • Fry SR, Chen AY, Daggard G, Mukkur TK (2008) Parenteral immunization of mice with a genetically inactivated pertussis toxin DNA vaccine induces cell-mediated immunity and protection. J Med Microbiol 57:28–35

    Article  CAS  PubMed  Google Scholar 

  • Geoghegan JA, Monk IR, O’Gara JP, Foster TJ (2013) Subdomains N2N3 of fibronectin binding protein a mediate Staphylococcus aureus biofilm formation and adherence to fibrinogen using distinct mechanisms. J Bacteriol 195:2675–2683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girard LP, Ceri H, Gibb AP, Olson M, Sepandj F (2010) MIC Versus MBEC to determine the antibiotic sensitivity of Staphylococcus aureus in peritoneal dialysis peritonitis. Peritoneal Dial Int 30:652–656

    Article  Google Scholar 

  • Gogoi-Tiwari J, Williams V, Waryah CB, Eto KY, Tau M, Costantino P, Tiwari HK, Mukkur T (2015) Immunogenicity and protective potential of biofilm versus planktonic vaccine against bovine mastitis caused by Staphylococcus aureus using mouse as a model system. Biofouling 3:543–554

  • Harrison JJ, Turner RJ, Howard Ceri H (2005) High-throughput metal susceptibility testing of microbial biofilms. BMC Microbiology 5:53

  • Huppert LA, Ramsdell TL, Chase MR, Sarracino DA, Fortune SM et al (2014) The ESX system in Bacillus subtilis mediates protein secretion. PLoS ONE 9:e96267

    Article  PubMed  PubMed Central  Google Scholar 

  • Josefsson E, Hartford O, O’Brien L, Patti JM, Foster T (2001) Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant. J Infect Dis 184:1572–1580

    Article  CAS  PubMed  Google Scholar 

  • Kropec A, Maira-Litran T, Jefferson KK, Grout M, Cramton SE, Gotz F, Goldmann DA, Pier GB (2005) Poly-N-acetylglucosamine production in Staphylococcus aureus is essential for virulence in murine models of systemic infection. Infect Immun 73:6868–6876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuklin NA, Clark DJ, Secore S, Cook J, Cope LD, McNeely T et al (2006) A novel Staphylococcus aureus vaccine: iron surface determinant B induces rapid antibody responses in rhesus macaques and specific increased survival in a murine S. aureus sepsis model. Infect Immun 74(4):2215–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LoSurdo P, Biancucci M, Falugi F, Nardi-Die V, Marchi S, Fontana MR et al (2013) Mining the bacterial unknown proteome: identification and characterization of a novel family of highly conserved protective antigens in Staphylococcus aureus. J Biochem 455:273–284

    Article  Google Scholar 

  • Loughman A, Sweeney T, Keane FM, Pietrocola G, Speziale P, Foster TJ (2008) Sequence diversity in the A domain of Staphylococcus aureus fibronectin-binding protein A. BMC Microbiol 8:74

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Riordan K, Lee JC (2004) Staphylococcus aureus capsular polysaccharides. Clin Microbiol Rev 17:218–234

    Article  PubMed  PubMed Central  Google Scholar 

  • Pier GB (2013) Will there ever be a universal Staphylococcus aureus vaccine? Hum Vaccin Immunother 9:1865–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pozzi C, Wilk K, Lee JC, Gening M, Nifantiev N, Pier GB (2012) Opsonic and protective properties of antibodies raised to conjugate vaccines targeting six Staphylococcus aureus antigens. PLoS One 7:e46648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verkaik NJ, Boelens HA, de Vogel CP, Tavakol M, Bode LG et al (2010) Heterogeneity of the humoral immune response following Staphylococcus aureus bacteremia. Eur J Clin Microbiol Infect Dis 29:509–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The first author would like to acknowledge CHIRI Biosciences, Research Precinct Curtin University, for the facilities provided in addition to Curtin University for providing the Australian Postgraduate Award (APA)/Curtin University Postgraduate Scholarships (CUPS). The authors would like to thank Professor Emeritus Timothy Foster, Trinity College, Dublin, for providing samples of most of the anti-MSCRAMM antibodies. The authors also extend their sincere thanks to Professor Gerald Pier, Brigham and Women’s Hospital, Channing Laboratory, Boston, USA, for providing the antisera against PNAG used in this investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trilochan Mukkur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waryah, C.B., Gogoi-Tiwari, J., Wells, K. et al. An immunological assay for identification of potential biofilm-associated antigens of Staphylococcus aureus . Folia Microbiol 61, 473–478 (2016). https://doi.org/10.1007/s12223-016-0459-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-016-0459-6

Keywords

Navigation