Skip to main content
Log in

Enhancing the lipid productivity of yeasts with trace concentrations of iron nanoparticles

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Oxidative stress induced by zero-valent iron nanoparticles (nZVIs) was used to improve lipid accumulation in various oleaginous and non-oleginous yeasts—Candida sp., Kluyveromyces polysporus, Rhodotorula glutinis, Saccharomyces cerevisiae, Torulospora delbrueckii, Trichosporon cutaneum, and Yarrowia lipolytica. The highest lipid yields occurred at 9–13 mg/L nZVIs. Gas chromatography-mass spectrometry was used for the quantitative and qualitative analysis of the fatty acids. It showed an increasing abundance of polyunsaturated fatty acids, especially essential linoleic acid, in the presence of nZVIs. Our results suggest that nZVIs can be used to improve not only lipid production by oleaginous microorganisms but also the nutritional value of biosynthesized unsaturated fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 90:1219–1227

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Chen XF, Huang C, Yang XY, Xiong L, Chen XD, Ma LL (2013) Evaluating the effect of medium composition and fermentation condition on the microbial oil production by Trichosporon cutaneum on corncob acid hydrolysate. Bioresource Technol 143:18–24

    Article  CAS  Google Scholar 

  • Chipperfield JR, Ratledge C (2000) Salicylic acid is not a bacterial siderophore: a theoretical study. Biometals 13:165–168

    Article  CAS  PubMed  Google Scholar 

  • Cipak A, Jaganjac M, Tehlivets O, Kohlwein SD, Zarkovic N (2008) Adaptation to oxidative stress induced by polyunsaturated fatty acids in yeast. BBA Mol Cell Biol Lipids 1781:283–287

    Article  CAS  Google Scholar 

  • Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328

    Article  PubMed  Google Scholar 

  • Dembitsky VM, Řezanka T (2005) Metabolites produced by nitrogen-fixing Nostoc species. Folia Microbiol 50:363–391

  • Dembitsky VM, Řezanka T, Rozentsvet OA (1993) Lipid composition of three macrophytes from the Caspian Sea. Phytochemistry 33:1015–1019

    Article  CAS  Google Scholar 

  • Fajardo C, Sacca ML, Martinez-Gomariz M, Costa G, Nande M, Martin M (2013) Transcriptional and proteomic stress responses of a soil bacterium Bacillus cereus to nanosized zero-valent iron (nZVI) particles. Chemosphere 93:1077–1083

    Article  CAS  PubMed  Google Scholar 

  • Gaensly F, Picheth G, Brand D, Bonfim TMB (2014) The uptake of different iron salts by the yeast Saccharomyces cerevisiae. Braz J Microbiol 45:491–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granger LM, Perlot P, Goma G, Pareilleux A (1993) Effect of various nutrient limitations on fatty acid production by Rhodotorula glutinis. Appl Microbiol Biotechnol 38:784–789

    Article  CAS  Google Scholar 

  • Hassan M, Blanc PJ, Granger LM, Pareilleux A, Goma G (1996) Influence of nitrogen and iron limitations on lipid production by Cryptococcus curvatus grown in batch and fed-batch culture. Process Biochemistry 31:355–361

    Article  CAS  Google Scholar 

  • Jamieson DJ (1998) Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14:1511–1527

    Article  CAS  PubMed  Google Scholar 

  • Jernejc K, Legisa M (2002) The influence of metal ions on malic enzyme activity and lipid synthesis in Aspergillus niger. FEMS Microbiol Lett 217:185–190

    Article  CAS  PubMed  Google Scholar 

  • Kadar E, Rooks P, Lakey C, White DA (2012) The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Sci Total Environ 439:8–17

    Article  CAS  PubMed  Google Scholar 

  • Kang NK, Lee B, Choi G-G, Moon M, Park MS, Lim J, Yang J-W (2014) Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles. Korean J Chem Eng 31:861–867

    Article  CAS  Google Scholar 

  • Kasting JF (1993) Earths early atmosphere. Science 259:920–926

    Article  CAS  PubMed  Google Scholar 

  • Keenan CR, Goth-Goldstein R, Lucas D, Sedlak DL (2009) Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environ Sci Technol 43:4555–4560

    Article  CAS  PubMed  Google Scholar 

  • Khatchadourian A, Maysinger D (2009) Lipid droplets: their role in nanoparticle-induced oxidative stress. Mol Pharm 6:1125–1137

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Yang JM, Xu X, Zhang L, Nie QJ, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energ 34:1–5

    Article  Google Scholar 

  • Pádrová K, Lukavský J, Nedbalová L, Čejková A, Cajthaml T, Sigler K, Vítová M, Řezanka T (2015) Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae. J Appl Phycol 27:1443–1451

    Article  Google Scholar 

  • Philpott CC (2006) Iron uptake in fungi: a system for every source. BBA Mol Cell Res 1763:636–645

    CAS  Google Scholar 

  • Řezanka T (1993) Polyunsaturated and unusual fatty acids from slime-molds. Phytochemistry 33:1441–1444

    Article  Google Scholar 

  • Řezanka T, Matoulková D, Kolouchová I, Masák J, Sigler K (2013) Brewer’s yeast as a new source of palmitoleic acid—analysis of triacylglycerols by LC-MS. J Am Oil Chem Soc 90:1327–1342

    Article  Google Scholar 

  • Richard D, Kefi K, Barbe U, Bausero P, Visioli F (2008) Polyunsaturated fatty acids as antioxidants. Pharmacol Res 57:451–455

    Article  CAS  PubMed  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  PubMed  Google Scholar 

  • Santamauro F, Whiffin FM, Scott RJ, Chuck CJ (2014) Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnol Biofuels 7:34–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Ševců A, El-Temsah YS, Joner EJ, Černík M (2011) Oxidative stress induced in microorganisms by zero-valent iron nanoparticles. Microbes Environ 26:271–281

    Article  PubMed  Google Scholar 

  • Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Phys 49:611–641

    Article  CAS  Google Scholar 

  • Šmilauer P, Lepš J (2003) Multivariate analysis of ecological data using CANOCO 5. Cambridge university press, Cambridge

    Google Scholar 

  • Vančura A, Řezanka T, Maršálek J, Vančurová I, Křišťan V, Basařová G (1987) Effect of ammonium ions on the composition of fatty acids in Streptomyces fradiae, producer of tylosin. FEMS Microbiol Lett 48:357–360

    Article  Google Scholar 

  • Widjaja A, Chien CC, Ju YH (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem 40:13–20

    Article  CAS  Google Scholar 

  • Yilancioglu K, Cokol M, Pastirmaci I, Erman B, Cetiner S (2014) Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. Plos One 9(e91957):1–13

    Google Scholar 

  • Zarnowski R, Dobrzyn A, Ntambi JM, Woods JP (2008) Ferrous, but not ferric, iron maintains homeostasis in Histoplasma capsulatum triacylglycerides. Curr Microbiol 57:153–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  • Zhao X, Kong XL, Hua YY, Feng B, Zhao ZB (2008) Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. Eur J Lipid Sci Tech 110:405–412

    Article  CAS  Google Scholar 

  • Zhu LY, Zong MH, Wu H (2008) Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresource Technol 99:7881–7885

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by GACR 14-00227S, by Financial support from specific university research (MSMT No 20/2015), and by Competence Center TE01020218 of the Technology Agency of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Řezanka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

. (DOC 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pádrová, K., Čejková, A., Cajthaml, T. et al. Enhancing the lipid productivity of yeasts with trace concentrations of iron nanoparticles. Folia Microbiol 61, 329–335 (2016). https://doi.org/10.1007/s12223-015-0442-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-015-0442-7

Keywords

Navigation