Skip to main content
Log in

Changes in GDPase/UDPase enzymatic activity in response to oxidative stress in four Candida species

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The terminal processing of proteins and lipids occurs in the Golgi apparatus and involves the transport of sugar nucleotides into the Golgi lumen by specific carriers and the accumulation of nucleoside diphosphates (NDPs) as a result of oligosaccharide-protein glycosyltransferase activity. NDPs are converted into the corresponding nucleoside monophosphates (NMPs) by nucleoside diphosphatases (NDPases), thus relieving inhibition of sugar transferases. In addition, NMPs are then exchanged for equimolecular amounts of cytosolic sugar nucleotides by antiport transport systems. NDPases, commonly GDPase and UDPase, thus play a critical role in glycoprotein maturation and may influence fungal pathogenesis, morphogenesis, and cell wall properties. Interest of this laboratory has recently focused on the effect of reactive oxygen species (ROS) on enzymes involved in detoxification of these oxidants and on the metabolism of biomolecules such as lipids, nucleic acids, and proteins in human pathogenic Candida species. We therefore consider it important to extend these studies to determine how GDPase and UDPase are affected after exposure of cells to oxidants such as menadione, a superoxide (O2 •−)-generator, and H2O2. Results indicate that activity of both enzymes decrease in response to these agents suggesting that ROS may also affect other critical cell functions such as protein glycosylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abeijon C, Yanagisawa K, Mandon EC, Hausler A, Moremen K, Hirschberg CB (1993) Guanosine diphosphatase is required for protein and sphingolipid glycosylation in the Golgi lumen of Saccharomyces cerevisiae. J Cell Biol 122(2):307–323

    Article  CAS  PubMed  Google Scholar 

  • Ausubel F, Brent R, Kingston RE et al (2001) 247 Current protocols in molecular biology. John Wiley & Sons, Inc, New York

    Book  Google Scholar 

  • Bogdan C, Rollinghoff M, Diefenbach A (2000) Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 12(1):64–76

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–554

    Article  CAS  PubMed  Google Scholar 

  • Brandan E, Fleischer B (1982) Orientation and role of nucleosidediphosphatase and 5′- nucleotidase in Golgi vesicles from rat liver. Biochemistry 21(19):4640–4645

    Article  CAS  PubMed  Google Scholar 

  • Brown A, Haynes K, Quinn J (2009) Nitrosative and oxidative stress responses in fungal pathogenicity. Curr Opin Microbiol 12(4):384–391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cuéllar-Cruz M, Briones-Martin-del-Campo M, Canas-Villamar I et al (2008) High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Eukaryot Cell 7(5):814–825

    Article  PubMed Central  PubMed  Google Scholar 

  • Cuéllar-Cruz M, Castaño I, Arroyo-Helguera O, De Las Peñas A (2009) Oxidative stress response to menadione and cumene hydroperoxide in the opportunistic fungal pathogen Candida glabrata. Mem Inst Oswaldo Cruz 104(4):649–654

    Article  PubMed  Google Scholar 

  • Cuéllar-Cruz M, Gutiérrez-Sánchez G, López-Romero E, Ruiz-Baca E, Villagómez-Castro JL, Rodríguez-Sifuentes JL (2013) Identification of Candida albicans heat shock proteins and Candida glabrata and Candida krusei enolases involved in the response to oxidative stress. Cent Eur J Biol 8(4):337–345

    Article  Google Scholar 

  • D’Alessio C, Trombetta SE, Parodi AJ (2003) Nucleoside diphosphatase and glycosyltransferase activities can localize to different subcellular compartments in Schizosaccharomyces pombe. J Biol Chem 278:22379–22387

    Article  PubMed  Google Scholar 

  • D’Alessio C, Caramelo JJ, Parodi AJ (2005) Absence of nucleoside diphosphatase activities in the yeast secretory pathway does not abolish nucleotide sugar-dependent protein glycosylation. J Biol Chem 280(49):40417–40427

    Article  PubMed  Google Scholar 

  • Erenpreisa J, Erenpreiss J, Freivalds T et al (2003) Toluidine blue test for sperm DNA integrity and elaboration of image cytometry algorithm. Cytometry A 52(1):19–27

    Article  PubMed  Google Scholar 

  • Gao XD, Kaigorodov V, Jigami Y (1999) YND1, a homologue of GDA1, encodes membrane-bound apyrase required for Golgi N- and O-glycosylation in Saccharomyces cerevisiae. J Biol Chem 274(30):21450–21456

    Article  CAS  PubMed  Google Scholar 

  • Gray JV, Petsko GA, Johnston GC, Ringe D, Singer RA, Werner-Washburne M (2004) Sleeping beauty: quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 68(2):187–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herrero AB, Uccelletti D, Hirschberg CB, Dominguez A, Abeijon C (2002) The Golgi GDPase of the fungal pathogen Candida albicans affects morphogenesis, glycosylation, and cell wall properties. Eukaryot Cell 1(3):420–431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirschberg CB, Snider MD (1987) Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem 56:63–87

    Article  CAS  PubMed  Google Scholar 

  • Iraqui I, Garcia-Sanchez S, Aubert S et al (2005) The Yak1p kinase controls expression of adhesins and biofilm formation in Candida glabrata in a Sir4p-dependent pathway. Mol Microbiol 55(4):1259–1271

    Article  CAS  PubMed  Google Scholar 

  • Kaloriti D, Tillmann A, Cook E et al (2012) Combinatorial stresses kill pathogenic Candida species. Med Mycol 50(7):699–709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khatra BS, Herries DG, Brew K (1974) Some kinetic properties of human-milk galactosyl transferase. Eur J Biochem 44(2):537–560

    Article  CAS  PubMed  Google Scholar 

  • Kuhn NJ, White A (1977) The role of nucleoside diphosphatase in a uridine nucleotide cycle associated with lactose synthesis in rat mammary-gland Golgi apparatus. Biochem J 168(3):423–433

    PubMed Central  CAS  PubMed  Google Scholar 

  • LeBel D, Poirier GG, Beaudoin AR (1978) A convenient method for the ATPase assay. Anal Biochem 85(1):86–89

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Avalos MD, Uccelletti D, Abeijon C, Hirschberg CB (2001) The UDPase activity of the Kluyveromyces lactis Golgi GDPase has a role in uridine nucleotide sugar transport into Golgi vesicles. Glycobiology 11(5):413–422

    Article  CAS  PubMed  Google Scholar 

  • Ohkubo I, Ishibashi T, Taniguchi N, Makita A (1980) Purification and characterization of nucleoside diphosphatase from rat-liver microsomes. Evidence for metalloenzyme and glycoprotein. Eur J Biochem 112(1):111–118

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Quijas MD, Zazueta-Sandoval R, Obregón-Herrera A, López-Romero E, Cuéllar-Cruz M (2015) Effect of oxidative stress on cell wall morphology in four pathogenic Candida species. Mycol Progress. doi:10.1007/s11557-015-1028-0

  • Sánchez R, Franco A, Gacto M, Notario V, Cansado J (2003) Characterization of gdp1+ as encoding a GDPase in the fission yeast Schizosaccharomyces pombe. FEMS Microbiol Lett 228(1):33–38

    Article  PubMed  Google Scholar 

  • Silva RC, Padovan AC, Pimenta DC, Ferreira RC, da Silva CV, Briones MR (2014) Extracellular enolase of Candida albicans is involved in colonization of mammalian intestinal epithelium. Front Cell Infect Microbiol 4:66. doi:10.3389/fcimb.2014.00066

    PubMed Central  PubMed  Google Scholar 

  • Sundaram A, Grant CM (2014) Oxidant-specific regulation of protein synthesis in Candida albicans. Fungal Genet Biol 67:15–23

    Article  CAS  PubMed  Google Scholar 

  • Temple MD, Perrone GG, Dawes IW (2005) 328 Complex cellular responses to reactive oxygen species. Trends Cell Biol 15(6):319–326

    Article  CAS  PubMed  Google Scholar 

  • Tillmann A, Gow NA, Brown AJ (2011) Nitric oxide and nitrosative stress tolerance in yeast. Biochem Soc Trans 39(1):219–223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uccelletti D, O’Callaghan C, Berninsone P, Zemtseva I, Abeijon C, Hirschberg CB (2004) ire-1-dependent transcriptional up-regulation of a lumenal uridine diphosphatase from Caenorhabditis elegans. J Biol Chem 279(26):27390–27398

    Article  CAS  PubMed  Google Scholar 

  • Uccelletti D, Anticoli S, Palleschi C (2007) The apyrase KlYnd1p of Kluyveromyces lactis affects glycosylation, secretion, and cell wall properties. FEMS Yeast Res 7(5):731–739

    Article  CAS  PubMed  Google Scholar 

  • Uccelletti D, Pascoli A, Farina F, Alberti A, Mancini P, Hirschberg CB, Palleschi C (2008) APY-1, a novel Caenorhabditis elegans apyrase involved in unfolded protein response signalling and stress responses. Mol Biol Cell 19(4):1337–1345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yanagisawa K, Resnick D, Abeijon C, Robbins PW, Hirschberg C (1990) A guanosine diphosphatase enriched in Golgi vesicles of Saccharomyces cerevisiae. Purification and characterization. J Biol Chem 265:19351–19355

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. M.A. Martínez-Rivera, Departamento de Microbiología, ENCB-IPN, México, for kindly providing the clinical isolates of the four Candida species used in this study. We also thank the financial support provided by the Proyecto-Institucional-UGTO-id202/2013 from Universidad de Guanajuato, México and PROMEP-UGTO-PTC-328 granted to Dr. M. Cuéllar-Cruz.

Conflict of interest

The authors declare that there were no conflicts of interest with any organization or entity with a financial interest or financial conflict with the material discussed in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayra Cuéllar-Cruz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado-Carmona, J.D., Ramírez-Quijas, M.D., Vega-González, A. et al. Changes in GDPase/UDPase enzymatic activity in response to oxidative stress in four Candida species. Folia Microbiol 60, 343–350 (2015). https://doi.org/10.1007/s12223-015-0382-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-015-0382-2

Keywords

Navigation