Skip to main content

Advertisement

Log in

The impact of growth conditions on biofilm formation and the cell surface hydrophobicity in fluconazole susceptible and tolerant Candida albicans

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The influence of acidic (5.6) and neutral (7.0) pH and glucose concentrations (0.9 and 2 %) was determined in in vitro biofilm formation and the cell surface hydrophobicity (CSH) in fluconazole (FLC) susceptible and tolerant yeasts of Candida albicans. The determination of biofilm viability using tetrazolium salt XTT showed that both FLC-tolerant C. albicans 1173 and FLC-sensitive C. albicans SC 5314 formed more robust biofilm in the YNB medium at pH 7.0 in the absence of FLC than that at acidic pH. Tested glucose concentrations did not show any direct effect on formation of biofilm under all conditions. However, determination of biofilm dry mass that contains also extracellular matrix suggested some effect of 2 % D-glucose. An increase in CSH (for about 10 %) was estimated in C. albicans SC 5314 in the presence of FLC, while the FLC-tolerant isolate proved a weak increase of CSH only in the YNB media containing 2 % D-glucose. Additionally, strain C. albicans SC 5314 strongly flocculated at neutral pH in the absence of FLC, but this phenomenon was not observed in the presence of FLC. Subinhibitory concentration of FLC influenced biofilm cells and CSH, but FLC susceptibility versus tolerance of C. albicans tested strains did not directly affect biofilm formation and/or CSH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal D, Patterson TF, Rinaldi MG, Revankar SG (2007) Trailing end-point phenotype of Candida spp. in antifungalsusceptibility testing to fluconazole is eliminated by altering incubation temperature. J Med Microbiol 56:1003–1004. doi:10.1099/jmm.0.47168-0

    Article  CAS  PubMed  Google Scholar 

  • Alp S, Sancak B, Hascelik G, Arikan S (2010) Influence of different susceptibility testing methods and media on determination of the relevant fluconazole minimum inhibitory concentrations for heavy trailing Candida isolates with low-high phenotype. Mycoses 53:475–480. doi:10.1111/j.1439-0507.2009.01739.x

    Article  PubMed  Google Scholar 

  • Bauer J, Wendland J (2007) Candida albicans Sfl1 suppresses flocculation and filamentation. Eukaryot Cell 10:1736–1744

  • Berila N, Hyroššová P, Subík J (2011) Oxidative stress response and virulence factors in Candida glabrata clinical isolates. Folia Microbiol 56:116–121. doi:10.1007/s12223-011-0016-2

    Article  CAS  Google Scholar 

  • Biswas SK, Chaffin WL (2005) Anaerobic growth of Candida albicans does not support biofilm formation under similar conditions used for aerobic biofilm. Curr Microbiol 51:100–104

    Article  CAS  PubMed  Google Scholar 

  • Biswas S, Van Dijck P, Datta A (2007) Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev 71:348–376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borecká-Melkusová S, Bujdáková H (2008) Variation of cell surface hydrophobicity and biofilm formation among genotypes of Candida albicans and Candida dubliniensis under antifungal treatment. Can J Microbiol 54:718–724

    Article  PubMed  Google Scholar 

  • Borecká-Melkusová S, Moran GP, Sullivan DJ, Kucharíková S, Chorvát DJ, Bujdáková H (2009) The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole. Mycoses 52:118–128

    Article  PubMed  Google Scholar 

  • Brablcová L, Buriánková I, Badurová P, Rulík M (2013) The phylogenetic structure of microbial biofilms and free-living bacteria in a small stream. Folia Microbiol 58:235–243. doi:10.1007/s12223-012-0201-y

    Article  Google Scholar 

  • Bruzual I, Riggle P, Hadley S, Kumamoto CA (2007) Biofilm formation by fluconazole-resistant Candida albicans strains is inhibited by fluconazole. J Antimicrob Chemother 59:441–450

    Article  CAS  PubMed  Google Scholar 

  • Bujdáková H, Paulovičová E, Borecká-Melkusová S, Gašperík J, Kucharíková S, Kolecka A, Lell C, Jensen DB, Würzner R, Chorvát D Jr, Pichová I (2008) Antibody response to the 45 kDa Candida albicans antigen in an animal model and potential role of the antigen in adherence. J Med Microbiol 57:1466–1472

    Article  PubMed  Google Scholar 

  • Cannon RD, Lamping E, Holmes AR, Niimi K, Tanabe K, Niimi M, Monk BC (2007) Candida albicans drug resistance another way to cope with stress. Microbiol 153:3211–3217

    Article  CAS  Google Scholar 

  • de Groot PW, Klis FM (2008) The conserved PA14 domain of cell wall-associated fungal adhesins governs their glycan-binding specificity. Mol Microbiol 68:535–537. doi:10.1111/j.1365-2958.2008.06182

  • Desai C, Mavrianos J, Chauhan N (2011) Candida albicans SRR1, a putative two-component response regulator gene, is required for stress adaptation, morphogenesis, and virulence. Eukaryot Cell 10:1370–1374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ene IV, Adya AK, Wehmeier S, Brand AC, Maccallum DM, Gow NA, Brown AJ (2012) Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cell Microbiol 14:1315–1335. doi:10.1111/j.1462-5822.2012.01813

    Article  Google Scholar 

  • Enjalbert B, Nantel A, Whiteway M (2003) Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol Biol Cell 14:1460–1467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Sanchez S, Aubert S, Iraqui I, Janbon G, Ghigo JM, d’Enfert C (2004) Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 3:536–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gillum AM, Tsay EY, Kirsch DR (1984) Isolation of the Candida albicans gene for orotidine-5’-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198:179–182

    Article  CAS  PubMed  Google Scholar 

  • Hawser SP, Douglas LJ (1994) Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun 62:915–921

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hazen KC, Mandell G, Coleman E, Wu G (2000) Influence of fluconazole at subinhibitory concentrations on cell surface hydrophobicity and phagocytosis of Candida albicans. FEMS Microbiol Lett 183:89–94

    Article  CAS  PubMed  Google Scholar 

  • Klotz SA, Drutz DJ, Zajic JE (1985) Factors governing adherence of Candida species to plastic surfaces. Infect Immun 50:97–101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kolecka A, Slobodníková L, Mokráš M, Chorvát D, Gašperík J, Bujdáková H (2007) Abstract from poster presentation: effect of pH, glucose concentration and fluconazole on cell surface hydrophobicity in Candida albicans and Candida dubliniensis isolated from HIV patients with oral candidiasis. J Chemother 19:48

    Google Scholar 

  • Kolecka A, Krauke Y, Bujdáková H, Sychrová H (2009) Subinhibitory concentrations of fluconazole increase the intracellular sodium content in both fluconazole-resistant and sensitive Candida albicans strains. Can J Microbiol 55:605–610

    Article  CAS  PubMed  Google Scholar 

  • Konno N, Ishii M, Nagai A, Watanabe T, Ogasawara A, Mikami T, Matsumoto T (2006) Mechanism of Candida albicans transformation in response to changes of pH. Biol Pharm Bull 29:923–926

    Article  CAS  PubMed  Google Scholar 

  • Kucharíková S, Tournu H, Lagrou K, Van Dijck P, Bujdáková H (2011) Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and its susceptibility to caspofungin and anidulafungin. J Med Microbiol 60:1261–1269

    Article  PubMed  Google Scholar 

  • Leach MD, Tyc KM, Brown AJ, Klipp E (2012) Modelling the regulation of thermal adaptation in Candida albicans, a major fungal pathogen of humans. PLoS ONE 7:e32467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Yan Z, Xu J (2003) Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiol 149:353–362

    Article  CAS  Google Scholar 

  • Li J, Hirota K, Goto T, Yumoto H, Miyake Y, Ichikawa T (2012) Biofilm formation of Candida albicans on implant overdenture materials and its removal. J Dent 40:686–692

    Article  PubMed  Google Scholar 

  • Linder T, Gustafsson CM (2008) Molecular phylogenetics of ascomycotal adhesins—a novel family of putative cell-surface adhesive proteins in fission yeasts. Fungal Genet Biol 45:485–497

    Article  CAS  PubMed  Google Scholar 

  • Magee BB, Legrand M, Alarco AM, Raymond M, Magee PT (2002) Many of the genes required for mating in Saccharomyces cerevisiae are also required for mating in Candida albicans. Mol Microbiol 46:1345–1351

    Article  CAS  PubMed  Google Scholar 

  • Melkusová S, Bujdáková H, Volleková A, Myoken Y, Mikami Y (2004) The efficiency of the benzothiazole APB, the echinocandin micafungin, and amphotericin B in fluconazole-resistant Candida albicans and Candida dubliniensis. Pharmazie 59:573–574

    PubMed  Google Scholar 

  • Mitchell AP (1998) Dimorphism and virulence in Candida albicans. Curr Opin Microbiol 1:687–692

    Article  CAS  PubMed  Google Scholar 

  • Mitchell AP, Romano GH, Groisman B, Yona A, Dekel E, Kupiec M, Dahan O, Pilpel Y (2009) Adaptive prediction of environmental changes by microorganisms. Nature 460:220–224

    Article  CAS  PubMed  Google Scholar 

  • National Committee for Clinical Laboratory Standards (2008) Reference method for broth dilution antifungal susceptibility testing of yeast. Approved standard M27-A3. National Committee for Clinical Laboratory Standards (2008), Wayne, PA

  • Ramage G, Martínez JP, López-Ribot JL (2006) Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 6:979–986

    Article  CAS  PubMed  Google Scholar 

  • Ramsdale M, Selway L, Stead D, Walker J, Yin Z, Nicholls SM, Crowe J, Sheils EM, Brown AJP (2008) MNL1 regulates weak acid-induced stress responses of the fungal pathogen Candida albicans. Mol Biol Cell 19:4393–4403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodaki A, Bohovych I, Enjalbert B, Young T, Odds FC, Gow NAR, Brown AJP (2009) Glucose promotes stress resistance in the fungal pathogen Candida albicans. Mol Biol Cell 20:4845–4855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosa EA, Rached RN, Ignácio SA, Rosa RT, José da Silva W, Yau JY (2008) Phenotypic evaluation of the effect of anaerobiosis on some virulence attributes of Candida albicans. J Med Microbiol 57:1277–1281

    Article  PubMed  Google Scholar 

  • Sabina J, Brown V (2009) Glucose sensing network in Candida albicans: a sweet spot for fungal morphogenesis. Eukaryot Cell 8:1314–1320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh A, Yadav V, Prasad R (2012) Comparative lipidomics in clinical isolates of Candida albicans reveal crosstalk between mitochondria, cell wall integrity and azole resistance. PLoS ONE 7:e39812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stichternoth C, Ernst JF (2009) Hypoxic adaptation by Efg1 regulates biofilm formation by Candida albicans. Appl Environ Microbiol 75:3663–3672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsao CC, Chen YT, Lan CY (2009) A small G protein Rhb1 and a GTPase-activating protein Tsc2 involved in nitrogen starvation-induced morphogenesis and cell wall integrity of Candida albicans. Fungal Genet Biol 46:126–136

    Article  CAS  PubMed  Google Scholar 

  • Tumbarello M, Fiori B, Trecarichi EM, Posteraro P, Losito AR, De Luca A, Sanguinetti M, Fadda G, Cauda R, Posteraro B (2012) Risk factors and outcomes of candidemia caused by biofilm-forming isolates in a tertiary care hospital. PLoS ONE 7:e33705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15

    Article  CAS  PubMed  Google Scholar 

  • Verstrepen KJ, Reynolds TB, Fink GR (2004) Origins of variation in the fungal cell surface. Nat Rev Microbiol 2:533–540

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Stead D, Selway L, Walker J, Riba-Garcia I, McLnerney T, Gaskell S, Oliver SG, Cash P, Brown AJ (2004) Proteomic response to amino acid starvation in Candida albicans and Saccharomyces cerevisiae. Proteomics 4:2425–2436

    Article  CAS  PubMed  Google Scholar 

  • Yoshijima Y, Murakami K, Kayama S, Liu D, Hirota K, Ichikawa T, Miyake Y (2010) Effect of substrate surface hydrophobicity on the adherence of yeast and hyphal Candida. Mycoses 53:221–226

    Article  PubMed  Google Scholar 

  • Yu Q, Wang H, Xu N, Cheng X, Wang Y, Zhang B, Xing L, Li M (2012) Spf1 strongly influences calcium homeostasis, hyphal development, biofilm formation and virulence in Candida albicans. Microbiol 158:2272–2282

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mgr Eva Sodomova for helpful assistance with the photographic examination of the flocculation phenomenon. This research was supported by EU grant Marie Curie Research Training Network MRTN-CT-2004-512481 CanTrain, by the Slovak Research and Development Agency under the contract No. APVV-0291-11, and by the grant VEGA 1/0966/12 supported by the Slovak Ministry of Education, Research, Science and Sport. The authors report no conflicts of interest; AK performed all experiments and participated in writing, DCh prepared the confocal scanning laser microscopy images, HB designed experimental research and participated in writing of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Bujdáková.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolecka, A., Chorvát, D. & Bujdáková, H. The impact of growth conditions on biofilm formation and the cell surface hydrophobicity in fluconazole susceptible and tolerant Candida albicans . Folia Microbiol 60, 45–51 (2015). https://doi.org/10.1007/s12223-014-0338-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-014-0338-y

Keywords

Navigation