Skip to main content
Log in

Cytoplasmic inorganic polyphosphate participates in the heavy metal tolerance of Cryptococcus humicola

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The basidiomycetous yeast Cryptococcus humicola was shown to be tolerant to manganese, cobalt, nickel, zinc, lanthanum, and cadmium cations at a concentration of 2.5 mmol/L, which is toxic for many yeasts. The basidiomycetous yeast Cryptococcus terreus was sensitive to all these ions and did not grow at the above concentration. In the presence of heavy metal cations, С. humicola, as opposed to C. terreus, was characterized by the higher content of acid-soluble inorganic polyphosphates. In vivo 4′,6′-diamino-2-phenylindole dihydrochloride staining revealed polyphosphate accumulation in the cell wall and cytoplasmic inclusions of С. humicola in the presence of heavy metals. In C. terreus, polyphosphates in the presence of heavy metals accumulate mainly in vacuoles, which results in morphological changes in these organelles and, probably, disturbance of their function. The role of polyphosphate accumulation and cellular localization as factors of heavy metal tolerance of Cryptococcus humicola is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achbergerová L, Nahálka J (2011) Polyphosphate—an ancient energy source and active metabolic regulator. Microb Cell Factories 10:63–70

    Article  Google Scholar 

  • Andreeva NA, Ryazanova LP, Dmitriev VV, Kulakovskaya TV, Kulaev IS (2013) Adaptation of Saccharomyces cerevisiae to toxic manganese concentration triggers changes in inorganic polyphosphates. FEMS Yeast Res 13:463–470

    Google Scholar 

  • Breus NA, Ryazanova LP, Dmitriev VV, Kulakovskaya TV, Kulaev IS (2012) Accumulation of phosphate and polyphosphate by Cryptococcus humicola and Saccharomyces cerevisiae in the absence of nitrogen. FEMS Yeast Res 12:617–624

    Article  CAS  PubMed  Google Scholar 

  • Castro CD, Koretsky AP, Domach MM (1999) NMR-observed phosphate trafficking and polyphosphate dynamics in wild-type and vph1-1 mutant Saccharomyces cerevisiae in response to stresses. Biotechnol Prog 15:65–73

    Article  Google Scholar 

  • Chin JP, Megaw J, Magill CL, Nowotarski K, Williams JP, Bhaganna P, Linton M, Patterson MF, Underwood GJC, Mswaka AY, Hallsworth JE (2010) Solutes determine the temperature windows for microbial survival and growth. PNAS 107:7835–7840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cray JA, Russell JT, Timson DJ, Singhal RS, Hallsworth JE (2013a) A universal measure of chaotropicity and kosmotropicity. Environ Microbiol 15:287–296

    Article  CAS  PubMed  Google Scholar 

  • Cray JA, Bell ANW, Bhaganna P, Mswaka AY, Timson DJ, Hallsworth JE (2013b) The biology of habitat dominance; can microbes behave as weeds? Microb Biotechnol 6:453–492

    Article  PubMed Central  PubMed  Google Scholar 

  • Culotta VC, Yang M, Hall MD (2005) Manganese transport and trafficking: lesson learned from Saccharomyces cerevisiae. Eukaryot Cell 4:1159–1165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Lima Freitas A, Ferreira de Moura G, Barbosa de Lima MA, Mendes de Souza P, Alves da Silva CA, de Campos Takaki GM, do Nascimento AE (2011) Role of the morphology and polyphosphate in Trichoderma harzianum related to cadmium removal. Molecules 16:2486–2500

    Article  Google Scholar 

  • Gardarin A, Chédin S, Lagniel G, Aude JC, Godat E, Catty P, Labarre J (2010) Endoplasmic reticulum is a major target of cadmium toxicity in yeast. Mol Microbiol 76:1034–1048

    Article  CAS  PubMed  Google Scholar 

  • Golubev W, Shabalin Y (1994) Microcin production in Cryptococcus humicola. FEMS Microbiol Lett 119:105–110

    Article  CAS  PubMed  Google Scholar 

  • Gomes FM, Carvalho DB, Peron AC, Saito K, Miranda K, Machado EA (2012) Inorganic polyphosphates are stored in spherites within the midgut of Anticarsia gemmatalis and play a role in copper detoxification. J Insect Physiol 58:211–219

    Article  CAS  PubMed  Google Scholar 

  • Hirota R, Kuroda A, Kato J, Ohtake H (2010) Bacterial phosphate metabolism and its application to phosphorus recovery and industrial bioprocess. J Biosci Bioeng 109:423–432

    Article  CAS  PubMed  Google Scholar 

  • Hothorn M, Neumann H, Lenherr ED, Wehner M, Rybin V, Hassa PO, Uttenweiler A, Reinhardt M, Schmidt A, Seiler J, Ladurner AG, Herrmann C, Scheffzek K, Mayer A (2009) Catalytic core of a membrane-associated eucaryotic polyphosphate polymerase. Science 324:513–516

    Article  CAS  PubMed  Google Scholar 

  • Jahid IK, Silva AJ, Benitez JA (2006) Polyphosphate stores enhance the ability of Vibrio cholerae to overcome environmental stresses in a low-phosphate environment. Appl Environ Microbiol 72:7043–7049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jensen LT, Ajua-Alemandji M, Culotta VC (2003) The Saccharomyces cerevisiae high affinity phosphate transporter encoded by PHO84 also functions in manganese homeostasis. J Biol Chem 278:42036–42040

    Article  CAS  PubMed  Google Scholar 

  • Jin YH, Dunlap PE, McBride SJ, Al-Refai H, Bushel PR, Freedman JH (2008) Global transcriptome and deletome profiles of yeast exposed to transition metals. PLoS Genet 4(4):e1000053

    Article  PubMed Central  PubMed  Google Scholar 

  • Kachalkin AV, Yurkov AM (2012) Yeast communities in Sphagnum phyllosphere along the temperature-moisture ecocline in the boreal forest-swamp ecosystem and description of Candida sphagnicola sp. nov. Antonie Van Leeuwenhoek 102:29–43

    Article  PubMed  Google Scholar 

  • Keasling JD, Van Dien SJ, Trelstad P, Renninger N, McMahon K (2000) Application of polyphosphate metabolism to environmental and biotechnological problems. Biochem Mosc 65:324–331

    CAS  Google Scholar 

  • Kennedy PJ, Vashisht AA, Hoe KL, Kim DU, Park HO, Hayles J, Russell P (2008) A genome-wide screen of genes involved in cadmium tolerance in Schizosaccharomyces pombe. Toxicol Sci 106:124–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kulaev IS, Vagabov VM, Kulakovskaya TV (2004) The biochemistry of inorganic polyphosphates. Wiley, Chichester

    Book  Google Scholar 

  • Lichko LP, Okorokov LA (1976) The compartmentalization of magnesium and phosphate ions in Saccharomyces carlsbergensis cells. Dokl Akad Nauk SSSR (in Russian) 227:756–758

    CAS  Google Scholar 

  • Liu Y, Zhou T, Crowley D, Li L, Liu D, Zheng J, Yu X, Pan G, Hussain Q, Zhang X, Zheng J (2012) Decline in topsoil microbial quotient, fungal abundance and C utilization efficiency of rice paddies under heavy metal pollution across South China. PLoS One 7(6):e38858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Macomber L, Hausinger RP (2011) Mechanisms of nickel toxicity in microorganisms. Metallomics 3:1153–1162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martin P, Van Mooy BA (2013) Fluorometric quantification of polyphosphate in environmental plankton samples: extraction protocols, matrix effects, and nucleic acid interference. Appl Environ Microbiol 79:273–281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mollinedo F (2012) Lipid raft involvement in yeast cell growth and death. Front Oncol 10(2):140. doi:10.3389/fonc.2012.00140, eCollection 2012

    Google Scholar 

  • Pavlov E, Aschar-Sobbi R, Campanella M, Turner RJ, Gómez-García MR, Abramov AY (2010) Inorganic polyphosphate and energy metabolism in mammalian cells. J Biol Chem 285:9420–9428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Permyakov S, Suzina N, Valiakhmetov A (2012) Activation of H+-ATPase of the plasma membrane of Saccharomyces cerevisiae by glucose: the role of sphingolipid and lateral enzyme mobility. PLoS One 7:e30966. doi:10.1371/journal.pone.0030966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Puchkov EO (2010) Brownian motion of polyphosphate complexes in yeast vacuoles: characterization by fluorescence microscopy with image analysis. Yeast 27:309–315

    CAS  PubMed  Google Scholar 

  • Puchkov EO, Zahringer U, Lindner B, Kulakovskaya TV, Seydel U, Wiese A (2002) Mycocidal, membrane-active complex of Cryptococcus humicola, is a new type of cellobiose lipid with detergent features. Biochim Biophys Acta (Biomembranes) 1558:161–170

    Article  CAS  Google Scholar 

  • Rao NN, Gómez-García MR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Ann Rev Biochem 78:605–647

    Article  CAS  PubMed  Google Scholar 

  • Rehman A, Anjum MS (2011) Multiple metal tolerance and biosorption of cadmium by Candida tropicalis isolated from industrial effluents: glutathione as detoxifying agent. Environ Monit Assess 174:585–595

    Article  CAS  PubMed  Google Scholar 

  • Remonsellez F, Orell A, Jerez CA (2006) Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism. Microbiology 152:59–66

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld L, Reddi AR, Leung E, Aranda K, Jensen LT, Culotta CV (2010) The effect of phosphate accumulation on metal ion homeostasis in Saccharomyces cerevisiae. J Biol Inorg Chem 15:1051–1062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Serafim LS, Lemos OC, Levantesi C, Tandoi V, Santos H, Reis MA (2002) Methods for detection and visualization of intracellular polymers stored by polyphosphate-accumulating microorganisms. J Microbiol Methods 51:1–18

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Raghukumar C, Parvatkar RR, Mascarenhas-Pereira MB (2013) Heavy metal tolerance in the psychrotolerant Cryptococcus sp. isolated from deep-see sediments of Central Indian Basin. Yeast 30:93–101

    Article  CAS  PubMed  Google Scholar 

  • Spain A (2003) Implication of microbial heavy metal tolerance in the environment. Rev Undergrad Res 2:1–6

    Google Scholar 

  • Thorsen M, Perrone GG, Kristiansson E, Traini M, Ye T, Dawes IW, Nerman O, Tamás MJ (2009) Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae. MC Genomics 12:100–105

    Google Scholar 

  • Turka M, Plemenitašb A, Gunde-Cimermana N (2011) Extremophilic yeasts: plasma-membrane fluidity as determinant of stress tolerance. Fungal Biol 115:950–958

    Article  Google Scholar 

  • Vadkertiová R, Sláviková E (2006) Metal tolerance of yeasts isolated from water, soil and plant environments. J Basic Microbiol 46:145–152

    Article  PubMed  Google Scholar 

  • Vagabov VM, Trilisenko LV, Kulaev IS (2000) Dependence of inorganic polyphosphate chain length on the orthophosphate content in the culture medium of the yeast Saccharomyces cerevisiae. Biochem Mosc 65:349–355

    CAS  Google Scholar 

  • Vagabov VM, Ivanov AY, Kulakovskaya TV, Kulakovskaya EV, Petrov VV, Kulaev IS (2008) Efflux of potassium ions from cells and spheroplasts of Saccharomyces cerevisiae yeast treated with silver and copper ions. Biochemistry (Mosc) 73:1224–1227

    Article  CAS  Google Scholar 

  • Vreulink JM, Stone W, Botha A (2010) Effects of small increases in copper levels on culturable basidiomycetous yeasts in low-nutrient soils. J Appl Microbiol 109:1411–1421

    Article  CAS  PubMed  Google Scholar 

  • Wysocki R, Tamás MJ (2010) How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 34:925–951

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors were supported by the Program of Presidium of Russian Academy of Sciences “The Problems of Life Origin and Biosphere Formation.” They are grateful to Dr. W.I. Golubev for kindly providing yeast strains and to E. Makeeva for assistance in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Kulakovskaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreeva, N., Ryazanova, L., Dmitriev, V. et al. Cytoplasmic inorganic polyphosphate participates in the heavy metal tolerance of Cryptococcus humicola . Folia Microbiol 59, 381–389 (2014). https://doi.org/10.1007/s12223-014-0310-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-014-0310-x

Keywords

Navigation