Skip to main content
Log in

Phytase activity in rabbit cecal bacteria

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The presence of phytase activity was demonstrated in 26 strains of rabbit cecal bacteria. In 25 strains a low phytase activity, 0.10–0.62 μmol phosphate released per min per mg protein, was found. High activity (2.61 μmol/min per mg protein) was found in the strain PP2 identified as Enterococcus hirae. Phytase activity was cell-associated, being higher in the cell extract than in the cell walls. Extracellular phytase activity and cell-associated phosphatase activity were not detected. Phytase activity was optimal around pH 5.0, which is below the physiological cecal pH range. The K m determined using the Lineweaver-Burk plot was 0.19 μmol/mL. Cations Fe3+, Cu2+ and Zn2+ at 0.5 mmol/L decreased phytase activity in sonicated cells of E. hirae by 99.4, 90.7 and 96.5 %, respectively. In contrast, Mg2+ increased activity by 11.0 %. Characteristics of E. hirae phytase (pH optimum, K m, cation sensitivity) were similar to those of other bacterial phytases reported in the literature. Other bacteria with a high phytase activity may be present in the rabbit cecum but remain to be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abriouel F., Lucas R., Ben Omar N., Valdivia E., Maqueda M., Martinez-Canamero M., Galvez A.: Enterocin AS-48RJ: a variant of enterocin AS-48 chromosomally encoded by Enterococcus faecium RJ16 isolated from food. Syst.Appl.Microbiol.28, 383–397 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Carabaño R., Piquer J.: The digestive system of the rabbit, pp. 1–16 in C. de Blas, J. Wiseman (Eds): The Nutrition of the Rabbit. CABI Publishing, Wallingford (UK) 1998.

    Google Scholar 

  • Clark B., Holms W.H.: Control of the sequential utilization of glucose and fructose by Escherichia coli. J.Gen.Microbiol.95, 191–201 (1976).

    CAS  Google Scholar 

  • D’silva C.G., Bae H.D., Yanke L.J., Cheng K.-J., Selinger L.B.: Localization of phytase in Selenomonas ruminantium and Mitsuokella multiacidus by transmission electron microscopy. Can.J.Microbiol.46, 391–395 (2000).

    Article  PubMed  Google Scholar 

  • Dvořáková J.: Phytase: sources, preparation and exploitation. Folia Microbiol.43, 323–338 (1998).

    Article  Google Scholar 

  • Greiner R., Konietzny U., Jany K.D.: Purification and characterization of two phytases from Escherichia coli. Arch.Biochem.Biophys.303, 107–113 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Gulati H.K., Chadha B.S., Saini H.S.: Production of feed enzymes (phytase and plant cell wall hydrolyzing enzymes) by Mucor indicus MTCC 6333: purification and characterization of phytase. Folia Microbiol.52, 491–497 (2007).

    Article  CAS  Google Scholar 

  • Herbert D., Phipps P.J., Strange R.E.: Chemical analysis of microbial cells, pp. 209–344 in J.R. Norris, D.W. Ribbons (Eds): Methods in Microbiology, Vol.5B. Academic Press, London-New York 1971.

    Google Scholar 

  • Igbasan F.A., Männer K., Miksch G., Borriss R., Farouk A., Simon O.: Comparative studies on the in vitro properties of phytases from various microbial origins. Arch.Anim.Nutr.53, 353–373 (2000).

    Article  CAS  Google Scholar 

  • Kerovuo J., Lauraeus M., Nurminen P., Kalkkinen N., Apajalahti J.: Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl.Environ.Microbiol.64, 2079–2085 (1998).

    PubMed  CAS  Google Scholar 

  • Maidak B.L., Larsen N., McCaughey M.J., Overbeek R., Olsen G.J., Fogel K., Blandy J., Woese C.R.: The ribosomal database project. Nucl.Acids Res.22, 3485–3487 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Marounek M., Petr O., Šimůnek J.: Monensin has no effect on growth and metabolism of Megasphaera elsdenii. Folia Microbiol.38, 383–386 (1993).

    Article  CAS  Google Scholar 

  • Marounek M., Dušková D., Skřivanová V.: Hydrolysis of phytic acid and its availability in rabbits. Brit.J.Nutr.89, 287–294 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Mateos G.G., de Blas C.: Minerals, vitamins and additives, pp. 145–175 in C. de Blas, J. Wiseman (Eds): The Nutrition of the Rabbit. CABI Publishing, Wallingford (UK) 1998.

    Google Scholar 

  • Pandey A., Szakacs G., Soccol C.R., Rodriguez-Leon J.A., Soccol V.T.: Production, purification and properties of microbial phytases. Biores.Technol.77, 203–214 (2001).

    Article  CAS  Google Scholar 

  • Pavlova K., Gargova S., Hristozova T., Tankova Z.: Phytase from Antarctic yeast strain Cryptococcus laurentii AL27. Folia Microbiol.53, 29–34 (2008).

    Article  CAS  Google Scholar 

  • Peterson G.L.: A simplified method for analysis of inorganic phosphate in the presence of interfering substances. Anal.Biochem.84, 164–172 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Reddy N.R., Sathe S.K., Salunkhe D.K.: Phytates in legumes and cereals. Adv.Food Res.28, 1–92 (1982).

    PubMed  CAS  Google Scholar 

  • Scheuermann S.E., Lantzsch H.-J., Menke K.H.: In vitro und in vivo Untersuchungen zur Hydrolyse von Phytat. 1. Löslichkeit von Phytat. J.Anim.Physiol.Anim.Nutr.60, 55–63 (1988).

    Article  CAS  Google Scholar 

  • Shedova E., Lipasova V., Velikodvorskaya G., Ovadis M., Chernin L., Khmel I.: Phytase activity and its regulation in a rhizospheric strain of Serratia plymuthica. Folia Microbiol.53, 110–114 (2008).

    Article  CAS  Google Scholar 

  • Sirotek K., Marounek M., Rada V., Benda V.: Isolation and characterization of rabbit caecal pectinolytic bacteria. Folia Microbiol.46, 79–82 (2001).

    Article  CAS  Google Scholar 

  • Sirotek K., Santos E., Benda V., Marounek M.: Isolation, identification and characterization of rabbit caecal mucinolytic bacteria. Acta Vet. Brno72, 365–370 (2003).

    Google Scholar 

  • Sirotek K., Rada V., Benda V., Marounek M.: Isolation and characterization of rabbit caecal xylanolytic bacteria. J Agrobiol.Ecol.1, 123–130 (2004).

    Google Scholar 

  • Sirotek K., Marounek M., Suchorská O.: Activity and cellular localization of amylases of rabbit caecal bacteria. Folia Microbiol.51, 309–312 (2006).

    Article  CAS  Google Scholar 

  • Steer T.E., Gee J.N., Johnson I.T., Gibson G.R.: Biodiversity of human fecal bacteria isolated from phytic acid enriched chemostat fermenters. Curr.Iss.Intest.Microbiol.5, 23–30 (2004).

    CAS  Google Scholar 

  • Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J.: 16S Ribosomal DNA amplification for phylogenetic study. J.Bacteriol.173, 697–703 (1991).

    PubMed  CAS  Google Scholar 

  • Yanke L.J., Bae H.D., Selinger L.B., Cheng K.-J.: Phytase activity of anaerobic ruminal bacteria. Microbiology144, 1565–1573 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Yanke L.J., Selinger L.B., Cheng K.-J.: Phytase activity of Selenomonas ruminantium: a preliminary characterization. Lett.Appl. Microbiol.29, 20–25 (1999).

    Article  CAS  Google Scholar 

  • Zamudio M., Gonzáles A., Medina J.A.: Lactobacillus plantarum phytase activity is due to non-specific acid phosphatase. Lett.Appl. Microbiol.32, 181–184 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Marounek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marounek, M., Břeňová, N., Suchorská, O. et al. Phytase activity in rabbit cecal bacteria. Folia Microbiol 54, 111–114 (2009). https://doi.org/10.1007/s12223-009-0016-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-009-0016-7

Keywords

Navigation