Skip to main content
Log in

Impedance and dielectric spectroscopy of nano-graphite reinforced silicon elastomer nanocomposites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Impedance and dielectric spectra of silicone elastomer nanocomposites were used to study their secondary (α* or β) relaxation behavior as a function of nano-graphite loadings in the frequency range of 10−1 to 106 Hz. The effect of nano-graphite loadings on real and imaginary parts of complex impedance has been distinctly visible and explained on the basis of interfacial polarization of filler and relaxation dynamics of polymer chains. The effects of nano-graphite loadings on loss tangent, dielectric permittivity, complex dielectric modulus and electrical conductivity have also been studied. The dielectric permittivity of the composites strongly depends up on the extent of nano-graphite concentration and temperature. The conductivity and relaxation phenomenon have been investigated through dielectric modulus formalism. Nyquist plots, Cole-Cole plots and Argand diagram confirm the existence of non-debye relationship. The frequency dependence of ac conductivity has been investigated by using Percolation theory. The percolation phenomenon has been discussed from electrical conductivity and dielectric permittivity and percolation threshold was found at 6 phr nano-graphite loading. SEM photomicrographs shows well dispersion of nano-graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Jiang, Z. M. Dang, and H. P. Xu, Eur. Polym. J., 43, 4924 (2007).

    Article  CAS  Google Scholar 

  2. M. Alexandre and P. Dubois, Mater. Sci. Eng., 28, 1 (2000).

    Article  Google Scholar 

  3. S. C. Jana and S. Jain, Polymer, 42, 6897 (2001).

    Article  CAS  Google Scholar 

  4. C. Saujanya and S. Radhakrishnan, Polymer, 42, 6723 (2001).

    Article  CAS  Google Scholar 

  5. P. Calvert, “Potential Applications of Nanotubes: Carbon Nanotubes, Preparation and Properties” (T. W. Ebbesen Ed.), pp.277–292, CRC Press, Boca Raton FL, 1997.

  6. V. Favier, G. R. Canova, S. C. Shrivastava, and J. Y. Cavaille, Polym. Eng. Sci., 37, 1732 (1997).

    Article  CAS  Google Scholar 

  7. B. K. G. Theng, “The Chemistry of Clay-organic Reactions”, p.343, John Wiley & Sons, New York, 1974.

    Google Scholar 

  8. G. H. Chen, D. J. Wu, W. G. Weng, and W. L. Yan, J. Appl. Polym. Sci., 82, 2506 (2001).

    Article  CAS  Google Scholar 

  9. Y. X. Pan, Z. Z. Yu, Y. C. Ou, and G. H. Hu, J. Polym. Sci. Pol. Chem., 38, 1626 (2000).

    Article  CAS  Google Scholar 

  10. Y. Kojima, A. Usuki, and M. Kawasami, J. Mater. Res., 6, 1185 (1993).

    Article  Google Scholar 

  11. G. Lagaly, Appl. Clay Sci., 15, 1 (1999).

    Article  CAS  Google Scholar 

  12. C. T. Drzal and H. Fukushima, Polym. Prepr., 42, 42 (2001).

    CAS  Google Scholar 

  13. L. M. Viculis, J. J. Mack, and R. B. Kaner, Science, 299, 1361 (2003).

    Article  CAS  Google Scholar 

  14. G. C. Psarras, E. Manolakaki, and G. M. Tsangaris, Compos. Pt. A-Appl. Sci. Manuf., 43, 1187 (2003).

    Article  Google Scholar 

  15. S. W. Shalaby, “Thermoplastic Polymers: Thermal Characterization of Polymeric Materials” (A Turi Ed.), pp.235–364, Academic Press, London, 1981.

  16. Y. J. Wang, Y. Pan, X. Zhang, and K. Tan, J. Appl. Polym. Sci., 98, 1344 (2005).

    Article  CAS  Google Scholar 

  17. G. Huber and T. A. Vilgis, Macromolecules, 35, 9204 (2002).

    Article  CAS  Google Scholar 

  18. M. Kluppel and G. Heinrich, Rubber Chem. Technol., 68, 623 (1995).

    Article  Google Scholar 

  19. J. Saji, A. Khare, R. N. P. Choudhary, and S. P. Mahapatra, J. Elast. Plast., 12, 1 (2013).

    Google Scholar 

  20. N. M. Renukappa, Siddaramaiah, R. D. S. Samuel, J. S. Rajan, and J. H. Lee, Mater. Sci.-Mater. Electron., 20, 648 (2009).

    Article  CAS  Google Scholar 

  21. L. Nayak, M. Rahaman, D. Khastgir, and T. K. Chaki, Polym. Bull., 67, 1029 (2011).

    Article  CAS  Google Scholar 

  22. V. Panwar, B. Kang, J. Park, S. Park, and R. M. Mehra, Eur. Polym. J., 45, 1777 (2009).

    Article  CAS  Google Scholar 

  23. J. Saji, A. Khare, R. N. P. Choudhary, and S. P. Mahapatra, J. Polym. Res., 21, 341 (2014).

    Article  Google Scholar 

  24. H. T. Lee, K. R. Chuang, S. A. Chen, P. K. Wei, J. H. Hsu, and W. Fann, Macromolecules, 28, 7645 (1995).

    Article  CAS  Google Scholar 

  25. H. Bottger and V. V. Bryskin, “Hopping Conduction in Solids”, pp.169–213, Akademie-Verlag, Berlin, 1985.

    Google Scholar 

  26. P. Ghosh and A. Chakrabarti, Eur. Polym. J., 36, 1043 (2000).

    Article  CAS  Google Scholar 

  27. A. K. Jonscher, Nature, 267, 673 (1977).

    Article  CAS  Google Scholar 

  28. X. Ying, B. Yuezhen, C. K. Chiang, and M. Masaru, Carbon, 45, 1302 (2007).

    Article  Google Scholar 

  29. P. Brandrup and E. H. Immergut, “Polymer Handbook”, 3rd ed., Chap. II, pp.1–145, Wiley Interscience, New York, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Mahapatra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saji, J., Khare, A. & Mahapatra, S.P. Impedance and dielectric spectroscopy of nano-graphite reinforced silicon elastomer nanocomposites. Fibers Polym 16, 883–893 (2015). https://doi.org/10.1007/s12221-015-0883-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-0883-2

Keywords

Navigation