Skip to main content
Log in

Compressive viscoelastic properties of softwood kraft lignin-based flexible polyurethane foams

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Softwood kraft lignin (SKL)-based water-blown flexible polyurethane foams were prepared using SKL as a crosslinking agent and a hard segment polyol. Polyethylene glycol (PEG) as a soft segment diol and 2,4-toluene diisocyanate (TDI) were used. While increasing hard segment content caused the increase in crosslink density in foams, the foams became more and more viscous with increasing hard segment content due to the distinctive phase heterogeneity in foams. In this case, the contributiveness of the filler-like behaviors of separated hard segments always overtook the crosslinking effects derived from SKL in terms of overall viscoelasticity, thus the resultant viscometric properties such as tanδ max and hysteresis loss increased as hard segment content increased. Furthermore, increasing M n,PEG caused the severer microphase separation and intensified the filler effects in foams, thus the foams became more viscous with increasing M n,PEG. The 25 % and 65 % CFD values and Young’s moduli of foams increased with increasing hard segment content due to the increase in crosslink density for foams, and the properties also increased with increasing foam density. Most of foams showed the support factors in the range of 2–3, which are suitable values for cushioning use. Even though the microscopic deformation behaviors in foams are irrelevant to foam density, the cyclic compressive tests showed that the higher foam density possess the better shape recovery performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Boerjan, J. Ralph, and M. Baucher, Annu. Rev. Plant Biol., 54, 519 (2003).

    Article  CAS  Google Scholar 

  2. J. H. Lora and W. G. Glasser, J. Polym. Environ., 10, 39 (2002).

    Article  CAS  Google Scholar 

  3. G. Gellerstedt and E.-L. Lindfors, Holzforschung, 38, 151 (1984).

    Article  CAS  Google Scholar 

  4. P. M. Froass, A. J. Ragauskas, and J. E. Jiang, Holzforschung, 52, 385 (1998).

    Article  CAS  Google Scholar 

  5. F. S. Chakar and A. J. Ragauskas, Ind. Crop. Prod., 20, 131 (2004).

    Article  CAS  Google Scholar 

  6. N.-E. El Mansouri and J. Salvadó, Ind. Crop. Prod., 26, 116 (2007).

    Article  Google Scholar 

  7. H. Cheradame, M. Detoisien, A. Gandini, F. Pla, and G. Roux, Br. Polymer J., 21, 269 (1989).

    Article  CAS  Google Scholar 

  8. D. V. Evtuguin, J. P. Andreolety, and A. Gandini, Eur. Polym. J., 34, 1163 (1998).

    Article  CAS  Google Scholar 

  9. S. Hirose, K. Kobashigawa, Y. Izuta, and H. Hatakeyama, Polymer International, 47, 247 (1998).

    Article  CAS  Google Scholar 

  10. C. Ciobanu, M. Ungureanu, L. Ignat, D. Ungureanu, and V. I. Popa, Ind. Crop. Prod., 20, 231 (2004).

    Article  CAS  Google Scholar 

  11. T. Hatakeyama, Y. Izuta, S. Hirose, and H. Hatakeyama, Polymer, 43, 1177 (2002).

    Article  CAS  Google Scholar 

  12. E. A. B. d. Silva, M. Zabkova, J. D. Araújo, C. A. Cateto, M. F. Barreiro, M. N. Belgacem, and A. E. Rodrigues, Chem. Eng. Res. Des., 87, 1276 (2009).

    Article  Google Scholar 

  13. H. Nadji, C. Bruzzèse, M. N. Belgacem, A. Benaboura, and A. Gandini, Macromol. Mater. Eng., 290, 1009 (2005).

    Article  CAS  Google Scholar 

  14. H. Hatakeyama, A. Nakayachi, and T. Hatakeyama, Compos. Part A: Appl. S., 36, 698 (2005).

    Article  Google Scholar 

  15. C. A. Cateto, M. F. Barreiro, A. E. Rodrigues, and M. N. Belgacem, Ind. Eng. Chem. Res., 48, 2583 (2009).

    Article  CAS  Google Scholar 

  16. Z.-M. Liu, F. Yu, G.-Z. Fang, and H.-J. Yang, J. Forest Res., 20, 161 (2009).

    Article  CAS  Google Scholar 

  17. W. D. Oliveira and W. G. Glasser, Polymer, 35, 1977 (1994).

    Article  Google Scholar 

  18. S. Sarkar and B. Adhikari, Eur. Polym. J., 37, 1391 (2001).

    Article  CAS  Google Scholar 

  19. S. Chahar, M. G. Dastidar, V. Choudhary, and D. K. Sharma, J. Adhes. Sci. Technol., 18, 169 (2004).

    Article  CAS  Google Scholar 

  20. M. J. Elwell, A. J. Ryan, H. J. M. Grünbauer, and H. C. Van Lieshout, Polymer, 37, 1353 (1996).

    Article  CAS  Google Scholar 

  21. D. Eaves, “Handbook of Polymer Foams”, Rapra Technology, 2004.

    Google Scholar 

  22. J. Pellinen and M. Salkinoja-Salonen, J. Chromatogr. A, 328, 299 (1985).

    Article  CAS  Google Scholar 

  23. A. Reimann, R. Mörck, H. Yoshida, H. Hatakeyama, and K. P. Kringstad, J. Appl. Polym. Sci., 41, 39 (1990).

    Article  CAS  Google Scholar 

  24. D. V. Dounis and G. L. Wilkes, Polymer, 38, 2819 (1997).

    Article  CAS  Google Scholar 

  25. R. W. Thring, P. Ni, and S. M. Aharoni, Int. J. Polym. Mater., 53, 507 (2004).

    Article  CAS  Google Scholar 

  26. A. H. Landrock, “Handbook of Plastic Foams: Types, Properties, Manufacture, and Applications”, Noyes Publications, 1995.

    Google Scholar 

  27. C. A. Cateto, M. F. Barreiro, A. E. Rodrigues, M. C. Brochier-Salon, W. Thielemans, and M. N. Belgacem, J. Appl. Polym. Sci., 109, 3008 (2008).

    Article  CAS  Google Scholar 

  28. O. Faix, S. Argyropoulos Dimitris, D. Robert, and V. Neirinck, “Determination of Hydroxyl Groups in Lignins Evaluation of 1H-, 13C-, 31P-NMR, FTIR and Wet Chemical Methods”, 1994.

    Google Scholar 

  29. W. Thielemans and R. P. Wool, Biomacromolecules, 6, 1895 (2005).

    Article  CAS  Google Scholar 

  30. ASTM D 3574-11, “ASTM D 3574-11”, ASTM International, West Conshohocken, PA, 2011.

    Google Scholar 

  31. J. C. Moreland, G. L. Wilkes, and R. B. Turner, J. Appl. Polym. Sci., 52, 549 (1994).

    Article  CAS  Google Scholar 

  32. S. W. White, S. K. Kim, A. K. Bajaj, P. Davies, D. K. Showers, and P. E. Liedtke, Nonlinear Dynamics, 22, 281 (2000).

    Article  Google Scholar 

  33. M. Baumgaertel and H. H. Winter, Rheologica Acta, 28, 511 (1989).

    Article  CAS  Google Scholar 

  34. H. Yoshida, R. Mörck, K. P. Kringstad, and H. Hatakeyama, J. Appl. Polym. Sci., 34, 1187 (1987).

    Article  CAS  Google Scholar 

  35. L. W. Hill, Progress in Organic Coatings, 31, 235 (1997).

    Article  CAS  Google Scholar 

  36. R. J. Zdrahala, R. M. Gerkin, S. L. Hager, and F. E. Critchfield, J. Appl. Polym. Sci., 24, 2041 (1979).

    Article  CAS  Google Scholar 

  37. C. B. Wang and S. L. Cooper, Macromolecules, 16, 775 (1983).

    Article  CAS  Google Scholar 

  38. J. P. Armistead, G. L. Wilkes, and R. B. Turner, J. Appl. Polym. Sci., 35, 601 (1988).

    Article  CAS  Google Scholar 

  39. K. Nakamae, T. Nishino, S. Asaoka, and Sudaryanto, Int. J. Adhes. Adhes., 16, 233 (1996).

    Article  CAS  Google Scholar 

  40. Z. S. Petrovi and J. Ferguson, Prog. Polym. Sci., 16, 695 (1991).

    Article  Google Scholar 

  41. H. A. Barnes, Rheology Reviews, 1 (2003).

    Google Scholar 

  42. Z. S. Petrovi and I. Javni, J. Polym. Sci. Pol. Phys., 27, 545 (1989).

    Article  Google Scholar 

  43. S. Velankar and S. L. Cooper, Macromolecules, 31, 9181 (1998).

    Article  CAS  Google Scholar 

  44. G. A. Campbell, J. Appl. Polym. Sci., 24, 709 (1979).

    Article  CAS  Google Scholar 

  45. R. E. Jones and G. Fesman, J. Cell. Plast., 1, 200 (1965).

    Article  Google Scholar 

  46. H. Yoshida, R. Mörck, K. P. Kringstad, and H. Hatakeyama, J. Appl. Polym. Sci., 40, 1819 (1990).

    Article  CAS  Google Scholar 

  47. M. Ashby and R. Medalist, Metall. Mater. Trans. A, 14, 1755 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongshin Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, H., Park, J., Kim, S. et al. Compressive viscoelastic properties of softwood kraft lignin-based flexible polyurethane foams. Fibers Polym 14, 1301–1310 (2013). https://doi.org/10.1007/s12221-013-1301-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-1301-2

Keywords

Navigation