Skip to main content
Log in

Effect of nanoclay and magnesium hydroxide on some properties of HDPE/wheat straw composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Since natural fiber/polymer composites are increasingly used, the development of safe and environmental friendly flame retarding bio-based composites is of great importance. But this issue must maintain the mechanical performance of these composites. To study these objectives, four levels of magnesium hydroxide Mg(OH)2 of (0, 10, 20, 30 phc) and two levels of nanoclay (0, 3 phc) were considered and incorporated into HDPE/wheat straw composites. Maleic anhydride grafted polyethylene (PE-g-MA) was also used as a compatibilizer at constant content. The samples were prepared by melt compounding and injection molding processes, respectively. The some properties of samples including burning rate and mechanical properties (tensile and impact strengths) were tested based on the ASTM standard. The results showed that the burning rate of samples decreased with increasing the nanoclay and Mg(OH)2 content. The tensile and impact strengths showed a marginal reduction by adding Mg(OH)2 from 10 phc to 30 phc and the tensile modulus and impact strength revealed an increase by increasing the amount of nanoclay up to 3 phc. Generally, these results confirmed that the fire retarding and mechanical properties of HDPE/wheat straw composites could be significantly improved with an appropriate combination of the nanoclay and Mg(OH)2 in the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Alemdar and M. Sain, Biores. Tech., 99, 6 (2008).

    Article  Google Scholar 

  2. Y. Copur, C. Guler, M. Akgul, and C. Tascioglu, Build. Environ., 42, 2568 (2007).

    Article  Google Scholar 

  3. X. F. Sun, R. C. Sun, J. Tomkinson, and M. S. Baird, Polym. Degrad. Stab., 83, 47 (2004).

    Article  CAS  Google Scholar 

  4. N. M. White and M. P. Ansell, J. Mater. Sci., 18, 1549 (1983).

    Article  CAS  Google Scholar 

  5. P. R. Hornsby, E. Hinrichsen, and K. Trivedi, J. Mater. Sci., 32, 443 (1997a).

    Article  CAS  Google Scholar 

  6. P. R. Hornsby, E. Hinrichsen, and K. Trivedi, J. Mater. Sci., 32, 1009 (1997b).

    Article  CAS  Google Scholar 

  7. L. Dobircau, P. A. Sreekumar, R. Saiah, N. Leblanc, C. Terrié, R. Gattin, and J. M. Saiter, Compos. Part A, 40, 329 (2009).

    Article  Google Scholar 

  8. C. J. Hilado, “Flammability Handbook for Plastics”, 5th ed., Technomic Publishing Co., Lancaster, Pennsylvania, 1998.

    Google Scholar 

  9. M. Sain, S. H. Park, F. Suhara, and S. Law, Polym. Degrad. Stab., 83, 363 (2004).

    Article  CAS  Google Scholar 

  10. N. Suppakarn and K. Jarukumjorn, Compos. Part B-Eng., 40, 613 (2009).

    Article  Google Scholar 

  11. N. M. Stark, R. H. White, S. A. Mueller, and T. A. Osswald, Polym. Degrad. Stab., 95, 1903 (2010).

    Article  CAS  Google Scholar 

  12. B. Li and J. He, Polym. Degrad. Stab., 83, 241 (2004).

    Article  CAS  Google Scholar 

  13. S. Z. Matko, A. Toldy, S. Keszei, P. Anna, G. Y. Bertalan, and G. Y. Marosi, Polym. Degrad. Stab., 88, 138 (2005).

    Article  CAS  Google Scholar 

  14. E. Gallo, B. Schartel, D. Acierno, and P. Russo, Eur. Polym. J., 47, 1390 (2011).

    Article  CAS  Google Scholar 

  15. G. Beyer, Fire Mater., 26, 291 (2002).

    Article  CAS  Google Scholar 

  16. T. Kashiwagi, F. Du, J. F. Douglas, K. I. Winey, R. H. Harris, and J. R. Shields, Nat. Mater., 4, 928 (2005).

    Article  CAS  Google Scholar 

  17. J. W. Gilman, Appl. Clay Sci., 15, 31 (1999).

    Article  CAS  Google Scholar 

  18. Y. Zhao, K. Wang, F. Zhu, P. Xue, and M. Jia, Polym. Degrad. Stab., 91, 2874 (2006).

    Article  CAS  Google Scholar 

  19. M. Kozlowski, A. Iwanczuk, S. Frackowiak, and T. Szczurek, “Proceedings of the International Sustainable Materials, Polymers & Composites Conference”, Warwick, September 11–12, 2007.

  20. B. Kord, J. Appl. Polym. Sci., 120, 607 (2011).

    Article  CAS  Google Scholar 

  21. A. P. Mouritz and A. G. Gibson in “Fire Properties of Polymer Composite Materials” (G. M. L. Gladwell Ed.), pp.237–286, Springer, The Netherlands, 2006.

    Google Scholar 

  22. C. M. Liauw, R. N. Rothon, G. C. Lees, and I. Zafar, J. Adhes. Sci. Technol., 15, 889 (2001).

    Article  CAS  Google Scholar 

  23. J. C. Yu, A. W. Xu, L. Z. Zhang, R. Song, and L. Wu, J. Phys. Chem. B, 108, 64 (2004).

    Article  CAS  Google Scholar 

  24. J. W. Gilman, R. D. Davis, J. R. Shields, D. Wentz, L. D. Brassell, A. B. Morgan, R. Lyon, and J. E. Zanetto, “Proceedings of the International SAMPE Technical Conference”, San Diego, USA, November 15–18, 2004.

  25. Z. X. Zhang, J. Zhang, B. X. Lu, Z. X. Xin, C. K. Kang, and J. K. Kim, Compos. Part B-Eng., 43, 150 (2011).

    Article  Google Scholar 

  26. C. M. Koo, H. T. Ham, S. O. Kim, K. H. Wang, and I. Chung, Macromol., 35, 5116 (2002).

    Article  CAS  Google Scholar 

  27. Q. Wu, Y. Lei, C. M. Clemons, F. Yao, Y. Xu, and K. Lian, J. Plast. Technol., 27, 108 (2007).

    Google Scholar 

  28. Y. Lei, Q. Wu, C. M. Clemons, F. Yao, and Y. Xu, J. Appl. Polym. Sci., 106, 3958 (2007).

    Article  CAS  Google Scholar 

  29. H. Chen, M. Wang, Y. Lin, C. M. Chan, and J. Wu, J. Appl. Polym. Sci., 106, 3409 (2007).

    Article  CAS  Google Scholar 

  30. S. K. Samal, S. Nayak, and S. Mohanty, J. Thermoplast. Compos., 21, 243 (2008).

    Article  CAS  Google Scholar 

  31. A. Ashori and A. Nourbakhsh, J. Compos. Mater., 43, 1869 (2009).

    Article  Google Scholar 

  32. J. Fu and H. E. Naguib, J. Cell. Plast., 42, 325 (2006).

    Article  CAS  Google Scholar 

  33. L. S. Schadler in “Nanocomposite Science and Technology” (P. M. Ajayan, L. S. Schadler, and P. V. Braun Eds.), pp.77–154, Wiley-VCH Verlag, Weinheim, 2003.

    Chapter  Google Scholar 

  34. S. Chapple and R. Anandjiwala, J. Thermoplast. Compos., 23, 871 (2010).

    Article  CAS  Google Scholar 

  35. T. D. Hapuarachchi and T. Peijs, Compos. Part A-Appl. S., 41, 954 (2010).

    Article  Google Scholar 

  36. G. I. Titleman, Y. Gonen, Y. Keidar, and S. Bron, Polym. Degrad. Stab., 77, 345 (2002).

    Article  Google Scholar 

  37. J. Inne and A. Innes, Plast. Addit. Compound., 4, 22 (2002).

    Article  Google Scholar 

  38. Y. Dong, D. Bhattacharyya, and P. J. Hunter, Compos. Sci. Technol., 68, 2864 (2008).

    Article  CAS  Google Scholar 

  39. S. H. Chiu and W. K. Wang, J. Appl. Polym. Sci., 67, 989 (1998).

    Article  CAS  Google Scholar 

  40. H. Dvira, M. Gottlieb, S. Darenb, and E. Tartakovskyb, Compos. Sci. Technol., 63, 1865 (2003).

    Article  Google Scholar 

  41. E. A. J. Al-Mulla, Fiber. Polym., 12, 444 (2011).

    Article  Google Scholar 

  42. A. Boukerrou, J. Duchet, S. Fellahi, M. Kaci, and H. Sautereau, J. Appl. Polym. Sci., 103, 3547 (2007).

    Article  CAS  Google Scholar 

  43. T. C. Li, J. Ma, M. Wang, W. Chauhari, T. Liu, and W. Huang, J. Appl. Polym. Sci., 103, 1191 (2007).

    Article  CAS  Google Scholar 

  44. P. Mareri, S. Bastide, N. Binda, and A. Crespy, Compos. Sci. Technol., 58, 747 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Farsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liany, Y., Tabei, A., Farsi, M. et al. Effect of nanoclay and magnesium hydroxide on some properties of HDPE/wheat straw composites. Fibers Polym 14, 304–310 (2013). https://doi.org/10.1007/s12221-013-0304-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-0304-3

Keywords

Navigation