Skip to main content
Log in

Development and characterization of MWNTs/Chitosan biocomposite fiber

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The Preparation of conductive biocomposite fiber through Carbon nanotubes (CNTs) incorporation into biopolymer matrixes has stimulated much interest for bio-implant applications. The present study focuses on development and characterization of biocomposite fiber composed of chitosan (CHT) as a biopolymer and multiwall carbon nanotubes (MWNTs) as a conductive filler. In term of processing, the most important challenge is to prepare a highly stable dispersion of MWNTs in biopolymer matrix. The hydrodynamic diameter distribution of CNTs in acetic acid solution acquired by dynamic light scattering (DLS).Results demonstrate the supreme stability of CNTs dispersion which is extremely essential for homogenous distribution of CNT in polymeric matrix. Rheological properties of the spinning solution have also been investigated to adjust the viscosity for fiber processing step. A range of viscosity between 2000–8000 cP, has been recorded in different CNT loading. The scanning electron microscopy (SEM) images of the surface and cross sectional area of the fibers reveal the formation of nano-pores after MWNT addition. The tensile strength show a maximum increase of about 33.65 % compared to bare CHT. Also, the measurement of four probe electrical conductivity for different MWNTs loading shows a maximum conductivity of 0.107 S/cm at percolation threshold of 2.89 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature, 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. A. M. K. Esawi and M. M. Farag, Mater. Design, 28, 2394 (2007).

    Article  CAS  Google Scholar 

  3. C. Li, E. T. Thostenson, and T. W. Chou, Compos. Sci. Technol., 68, 1227 (2008).

    Article  CAS  Google Scholar 

  4. Y. L. Chen, B. Liu, J. Wu, Y. Huang, H. Jiang, and K. C. Hwang, J. Mech. Phys. Solids, 56, 3224 (2008).

    Article  CAS  Google Scholar 

  5. G. X. Wang, J. H. Ahn, J. Yao, M. Lindsay, H. K. Liu, and S. X. Dou, J. Power Sources, 119–121, 16 (2003).

    Article  Google Scholar 

  6. A. Arena, N. Donato, G. Saitta, S. Galvagno, C. Milone, and A. Pistone, Microelectron. J., 39, 1659 (2008).

    Article  CAS  Google Scholar 

  7. N. H. Tai, M. K. Yeh, and T. H. Peng, Compos. Part B, 39, 926 (2008).

    Article  Google Scholar 

  8. Q. Wang, J. Dai, W. Li, Z. Wei, and J. Jiang, Compos. Sci. Technol., 68, 1644 (2008).

    Article  CAS  Google Scholar 

  9. H. Wang, Curr. Opin. Colloid. Int., 14, 364 (2009).

    Article  CAS  Google Scholar 

  10. P. Liu, Eur. Polym. J., 41, 2693 (2005).

    Article  CAS  Google Scholar 

  11. S. E. Moulton, A. I. Minett, R. Murphy, K. P. Ryan, D. McCarthy, J. N. Coleman, W. J. Blau, and G. G. Wallace, Carbon, 43, 1879 (2005).

    Article  CAS  Google Scholar 

  12. N. V. Majeti and R. Kumar, React. Funct. Polym., 46, 1 (2000).

    Article  Google Scholar 

  13. V. K. Mourya and N. N. Inamdar, React. Funct. Polym., 68, 1013 (2008).

    Article  CAS  Google Scholar 

  14. C. K. S. Pillai, W. Paul, and C. P. Sharma, Prog. Polym. Sci., 34, 641 (2009).

    Article  CAS  Google Scholar 

  15. O. C. Agboh and Y. Qin, Polym. Adv. Technol., 8, 355 (1996).

    Article  Google Scholar 

  16. Y. Liu, J. Tang, X. Chen, and J. X. Xin, Carbon, 43, 3178 (2005).

    Article  CAS  Google Scholar 

  17. S. F. Wang, S. L. Zhang, and Y. J. Tong, Biomacromol., 6, 3067 (2005).

    Article  CAS  Google Scholar 

  18. Z. Wu, W. Feng, Y. Feng, Q. Liu, X. Xu, T. Sekino, A. Fujii, and M. Ozaki, Carbon, 45, 1212 (2007).

    Article  CAS  Google Scholar 

  19. W. Zheng, Y. Q. Chen, and Y. F. Zheng, Appl. Surf. Sci., 255, 571 (2008).

    Article  CAS  Google Scholar 

  20. Y. L. Liu, W. H. Chen, and Y. H. Chang, Carbohyd. Polym., 76, 232 (2009).

    Article  CAS  Google Scholar 

  21. F. Peng, F. Pan, H. Suna, L. Lianyu, and Z. Jiang, J. Membrane Sci., 300, 13 (2007).

    Article  CAS  Google Scholar 

  22. G. M. Spinks, S. R. Shin, G. G. Wallace, P. G. Whitten, S. I. Kim, and S. J. Kim, Sensor. Actuat. B., 115, 678 (2006).

    Article  Google Scholar 

  23. S. Ozarkar, M. Jassal, and K. Agrawal, Smart Mater. Struct., 17, 055016 (2008).

    Article  Google Scholar 

  24. G. M. Spinks, S. R. Shin, G. G. Wallace, P. G. Whitten, I. Y. Kim, S. I. Kim, and S. J. Kim, Sensor. Actuat. B., 121, 616 (2007).

    Article  Google Scholar 

  25. A. Ziabicki, “Fundamentals of Fibre Formation”, 1st ed., pp.85–112, A Wiley-Interscience Publication, New York, 1976.

    Google Scholar 

  26. J. Barzin, S. S. Madaeni, and H. Mirzadeh, Iran. Polym. J., 14, 353 (2005).

    CAS  Google Scholar 

  27. C. Lau and M. J. Cooney, Langmuir, 24, 7004 (2008).

    Article  CAS  Google Scholar 

  28. Q. Wang, J. Dai, W. Li, J. Wei, and J. Jiang, Compos. Sci. Technol., 68, 1644 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Mottaghitalab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piri, N., Mottaghitalab, V. & Arbab, S. Development and characterization of MWNTs/Chitosan biocomposite fiber. Fibers Polym 14, 236–242 (2013). https://doi.org/10.1007/s12221-013-0236-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-0236-y

Keywords

Navigation