Skip to main content
Log in

Incorporating shape memory properties in poly(ethylene terephthalate) film by isothermal crystallization

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this paper the peculiar shape memory property of semicrystalline PET films is studied. The shape memory samples were prepared through isothermal crystallization of glassy PET films at different temperatures between 120 and 230 °C for 15 and 4 minutes. It was assumed that the incorporated shape memory constitution is due to crystalline and amorphous parts and also third phase i.e. a rigid amorphous fraction (RAF) which rose by increasing the degree of crystallinity. The microstructure of samples was probed by DSC and WAXD analysis, and concluded that isothermal crystallization at temperature which spinodal decomposition mechanism is dominant, brings the formation of secondary crystal lamellas in amorphous regions between pre-existing lamellar stacks, incorporating shape recovery in the samples. As the crystallization proceeds with time or at higher temperatures, the fraction of RAF increases leading to suppression of shape memory effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Thomas and P. M. Visakh, “Handbook of Engineering and Speciality Thermoplastics: Polyethers and Polyesters”, 1th ed., Vol. 3, pp.97–127, Wiley-Scrivener, 2011.

  2. S. Fakirov(ed.), “Handbook of Thermoplastic Polyesters: Homopolymers, Copolymers, Blends and Composites”, Vol.1, Wiley-VCH, 2002.

  3. S. Demeo, Science as Culture, 5, 352 (1996).

    Article  Google Scholar 

  4. L. Cangémi and Y. Meimon, Oil & Gas Science and Technology — Rev. IFP, 56, 555 (2001).

    Article  Google Scholar 

  5. J. L. Hu, “Shape Memory Polymers and Textiles”, Woodhead Pub., England, 2007.

    Book  Google Scholar 

  6. A. Lendlein and S. Kelch, Angew. Chem. Int. Ed., 41, 2034 (2002).

    Article  CAS  Google Scholar 

  7. T. Harai, H. Maruyama, T. Suzuki, and S. Hayashi, J. Appl. Polym. Sci., 45, 1849 (1992).

    Article  Google Scholar 

  8. X. He, Y. Oishi, and A. Takahara, Polym. J., 28, 452 (1996).

    Article  CAS  Google Scholar 

  9. Y. M. Lee, S. H. Kim, and C. S. Chao, J. Appl. Polym. Sci., 62, 310 (1996).

    Google Scholar 

  10. A. Lendlein and R. Langer, Science, 296, 1673 (2002).

    Article  Google Scholar 

  11. W. Sokolowski, A. Metcalfe, and S. Hayashi, Biomed. Mater., 2, 23 (2007).

    Article  Google Scholar 

  12. C. Liang Carogers, C. Rogers, and E. Malafeew, J. Intelligent Mater. Syst. Struct., 8, 380 (1997).

    Article  Google Scholar 

  13. M. Behl and A. Lendlei, Mater. Today, 10, 20 (2007).

    Article  CAS  Google Scholar 

  14. C. Liu, H. Qin, and P. T. Mather, J. Mater. Chem., 17, 1543 (2007).

    Article  CAS  Google Scholar 

  15. M. Behl, M. Y. Razzaq, and A. Lendlein, Adv. Mater., 22, 3388 (2010).

    Article  CAS  Google Scholar 

  16. D. Craig, V. Kett, J. Murphy, and D. Price, Pharmaceutical Research, 18, 1081 (2001).

    Article  CAS  Google Scholar 

  17. W. Zhang, L. Chen, and Y. Zhang, Polymer, 50, 1311 (2009).

    Article  CAS  Google Scholar 

  18. Y. S. Wong, Y. Xiong, S. S. Venkatraman, and F. Y. Cboey, J. Biomater. Sci., Polym. Ed., 19, 175 (2008).

    Article  CAS  Google Scholar 

  19. Y. S. Wong and S. Venkatraman, Acta Materialia, 58, 49 (2010).

    Article  CAS  Google Scholar 

  20. D. H. Cho, W. R. Yu, J. H. Youk, and J. H. Yoo, Eur. Polym. J., 43, 3562 (2007).

    Article  CAS  Google Scholar 

  21. J. W. Cahn, J. Chem. Phys., 42, 93 (1965).

    Article  CAS  Google Scholar 

  22. H. Furukawa, Adv. Phys., 34, 703 (1985).

    Article  CAS  Google Scholar 

  23. J. I. Lauritzen and J. D. Hoffman, J. Appl. Phys., 44, 4340 (1973).

    Article  CAS  Google Scholar 

  24. L. H. Sperling, “Introduction to Physical Polymer Science”, 4th ed., pp.153–163, Wiley-Interscience, New York, 2006.

    Google Scholar 

  25. M. Imai, K. Kaji, and T. Kanaya, Phys. Rev. Lett., 71, 4162 (1993).

    Article  CAS  Google Scholar 

  26. N. J. Terrill, P. A. Fairclough, E. Towns-Andrews, B. U. Komanschek, R. J. Young, and A. J. Ryan, Polymer, 39, 2381 (1998).

    Article  CAS  Google Scholar 

  27. E. L. Heeley, A. Maidens, P. D. Olmsted, W. Bras, I. P. Dolbnya, and J. P. A. Fairclough, Macromolecules, 36, 3656 (2003).

    Article  CAS  Google Scholar 

  28. M. Imai, K. Kaji, and T. Kanay, Macromolecules, 27, 7103 (1994).

    Article  CAS  Google Scholar 

  29. K. Nishida, K. Kaji, T. Kanaya, G. Matsuba, and T. Konisha, J. Polym. Sci. Pol. Phys., 42, 1817 (2004).

    Article  CAS  Google Scholar 

  30. P. D. Olmsted, W. C. K. Poon, T. C. B. McLeish, N. J. Terrill, and A. J. Ryan, Phys. Rev. Lett., 81, 373 (1998).

    Article  CAS  Google Scholar 

  31. P. G. Karagiannidis, A. C. Stergiou, and G. P. Karayannidis, Eur. Polym. J., 44, 1475 (2008).

    Article  CAS  Google Scholar 

  32. J. D. Badia, E. Strömberg, S. Karlsson, and A. Ribes-Greus, Polym. Degrad. Stab., 97, 98 (2012).

    Article  CAS  Google Scholar 

  33. R. Rastogi, W. P. Vellinga, S. Rastogi, C. Schick, and H. E. H. Meijer, J. Polym. Sci. Pol. Phys., 42, 2092 (2004).

    Article  CAS  Google Scholar 

  34. J. D. Menczel, J. Therm. Anal. Calorim., 106, 7 (2011).

    Article  CAS  Google Scholar 

  35. E. Abdel-Bary, “Handbook of Plastic Films”, p.247, Rapra Technology Limited, UK, 2003.

    Google Scholar 

  36. S. Fakirov, E. W. Fischer, and C. F. Schmidt, Makromol. Chem., 176, 2459 (1975).

    Article  CAS  Google Scholar 

  37. D. Kawakami, B. S. Hsiao, S. Ran, C. Burger, B. Fu, I. Sics, B. Chu, and T. Kikutani, Polymer, 45, 905 (2004).

    Article  CAS  Google Scholar 

  38. H. P. Klug and L. E. Alexander, “X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials”, John Wiley, New York, 1974.

    Google Scholar 

  39. T. Toda, H. Yoshida, and K. Fukunishi, Polymer, 36, 699 (1995).

    Article  CAS  Google Scholar 

  40. L. Sirelli, R. A. Pereira, C. A. Perez, and M. L. Diaz, Macromol. Sci. B Phys., 45, 270 (2006).

    Google Scholar 

  41. M. Canetti and F. Bertini, Eur. Polym. J., 46, 270 (2010).

    Article  CAS  Google Scholar 

  42. A. Flores, M. Pieruccinib, N. Stribeckc, S. S. Funarid, E. Boscha, and F. J. Baltá-Callejaa, Polymer, 46, 9404 (2005).

    Article  CAS  Google Scholar 

  43. P. J. Holdsworth and A. Turner-Jones, Polymer, 12, 195 (1971).

    Article  CAS  Google Scholar 

  44. J. D. Ferry, “Viscoelastic Properties of Polymers”, 3rd ed., Wiley-Interscience, New York, 1980.

    Google Scholar 

  45. B. Bhushan and H. Fuchs, “Applied Scanning Probe Methods III: Characterization”, p.85, Springer, Germany, 2006.

    Book  Google Scholar 

  46. B. Wunderlich, “Thermal Analysis of Polymeric Materials”, Netherlands, Springer, 2005.

    Google Scholar 

  47. A. Mehta, U. Gaur, and B. Wunderlich, J. Polym. Sci. Polym Phys. Ed., 16, 289 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Karimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saatchi, E., Karimi, M. Incorporating shape memory properties in poly(ethylene terephthalate) film by isothermal crystallization. Fibers Polym 14, 208–215 (2013). https://doi.org/10.1007/s12221-013-0208-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-0208-2

Keywords

Navigation