Skip to main content

Advertisement

Log in

John’s Ellipsoid and the Integral Ratio of a Log-Concave Function

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We extend the notion of John’s ellipsoid to the setting of integrable log-concave functions. This will allow us to define the integral ratio of a log-concave function, which will extend the notion of volume ratio, and we will find the log-concave function maximizing the integral ratio. A reverse functional affine isoperimetric inequality will be given, written in terms of this integral ratio. This can be viewed as a stability version of the functional affine isoperimetric inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alonso-Gutiérrez, D.: On a reverse Petty projection inequality for projections of convex bodies. Adv. Geom. 14, 215–223 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arstein-Avidan, S., Klartag, B., Schütt, C., Werner, E.: Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality. J. Funct. Anal. 262(9), 4181–4204 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arstein, S., Klartag, B., Milman, V.: The Santaló point of a function, and a functional form of Blaschke-Santaló inequality. Mathematika 51, 33–48 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ball, K.: Volume ratios and a reverse isoperimetric inequality. J. Lond. Math. Soc. 44(2), 351–359 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barthe, F.: An extremal property of the mean width of the simplex. Math. Ann. 310(4), 685–693 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bobkov, S.G., Madiman, M.: Reverse Brunn–Minkowski and reverse entropy power inequalities for convex measures. J. Funct. Anal. 262(7), 3309–3339 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bobkov, S.G., Madiman, M.: Entropy and the hyperplane conjecture in convex geometry. In: 2010 IEEE International Symposium on Information Theory Proceedings (ISIT), Austin, pp. 1438–1442 (2010)

  8. Brascamp, H.J., Lieb, E.H.: Best constants in Young’s inequality, its converse, and its generalization to mor than three functions. Adv. Math. 20, 151–173 (1976)

    Article  MATH  Google Scholar 

  9. Colesanti, A.: Functional inequalities related to the rogers-Shephard inequality. Mathematika 53(1), 81–101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Colesanti, A., Fragalà, I.: The area measure of log-concave functions and related inequalities. Adv. Math. 244, 708–749 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fradelizi, M., Meyer, M.: Some functional forms of Blaschke-Santaló inequality. Math. Z. 256(2), 379–395 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiménez, C.H., Naszodi, M.: On the extremal distance between two convex bodies. Israel J. Math. 183, 103–115 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. John, F.: Extremum problems with inequalities as subsidiary conditions. Studies and Essays Presented to R. Courant on his 60th Birthday. Interscience (New York, 1948), pp. 187–204, 1948

  14. Klartag, B., Milman, V.D.: Geometry of log-concave functions and measures. Geom. Dedic. 112(1), 169–182 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Leichtweiss, K.: Über die affine Exzentrizität konvexer Körper. Arch. Math. 10, 187–199 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mazj́a, W.G.: Sobolev Spaces, Springer Series in Soviet Mathematics, vol. 145. Springer, Berlin (1985)

    Google Scholar 

  17. Palmon, O.: The only convex body with extremal distance from the ball is the simplex. Israel J. Math. 80(3), 337–349 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Petty, C.M.: Isoperimetric problems. In: Proceedings of the Conference on Convexity and Combinatorial Geometry, pp. 26–41. University of Oklahoma, Norman (1971)

  19. Schechtman, G., Schmuckenschläger, M.: A concentration inequality for harmonic measures on the sphere. GAFA Semin. Oper. Theory Adv. Appl. 77, 255–274 (1995)

    MathSciNet  MATH  Google Scholar 

  20. Schmuckensläger, M.: An Extremal Property of the Regular Simplex. Convex Geometric Analysis, vol. 34. MSRI Publications, Berkeley (1998)

    Google Scholar 

  21. Schneider, R.: Simplices, Educational Talks in the Research Semester on Geometric Methods in Analysis and Probability. Erwin Schrödinger Institute, Viena (2005)

    Google Scholar 

  22. Zhang, G.: The affine Sobolev inequality. J. Differ. Geom. 53, 183–202 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first named author is partially supported by Spanish Grants MTM2013-42105-P, MTM2016-77710-P Projects and by IUMA. The second named author is partially supported by Fundación Séneca, Science and Technology Agency of the Región de Murcia, through the Programa de Formación Postdoctoral de Personal Investigador, Project reference 19769/PD/15, and the Programme in Support of Excellence Groups of the Región de Murcia, Spain, Project reference 19901/GERM/15. The third named author is supported by CAPES and IMPA. The second, third, and fourth authors are partially supported by MINECO Project reference MTM2015-63699-P, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hugo Jiménez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso-Gutiérrez, D., Merino, B.G., Jiménez, C.H. et al. John’s Ellipsoid and the Integral Ratio of a Log-Concave Function. J Geom Anal 28, 1182–1201 (2018). https://doi.org/10.1007/s12220-017-9858-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9858-4

Keywords

Mathematics Subject Classification

Navigation